Data-Driven Computationally Intensive Theory Development

被引:130
作者
Berente, Nicholas [1 ]
Seidel, Stefan [2 ]
Safadi, Hani [3 ]
机构
[1] Univ Notre Dame, Notre Dame, IN 46556 USA
[2] Univ Liechtenstein, FL-9490 Vaduz, Liechtenstein
[3] Univ Georgia, Athens, GA 30602 USA
关键词
grounded theory methodology; computational theory discovery; GTM; computational; trace data; theory development; lexicon; inductive; GROUNDED THEORY; INFORMATION-SYSTEMS; SOCIAL MEDIA; DATA SCIENCE; BIG DATA; EMERGENCE; ANALYTICS;
D O I
10.1287/isre.2018.0774
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
Increasingly abundant trace data provide an opportunity for information systems researchers to generate new theory. In this research commentary, we draw on the largely "manual" tradition of the grounded theory methodology and the highly "automated" process of computational theory discovery in the sciences to develop a general approach to computationally intensive theory development from trace data. This approach involves the iterative application of four general processes: sampling, synchronic analysis, lexical framing, and diachronic analysis. We provide examples from recent research in information systems.
引用
收藏
页码:50 / 64
页数:15
相关论文
共 50 条