Data-Driven Computationally Intensive Theory Development

被引:130
|
作者
Berente, Nicholas [1 ]
Seidel, Stefan [2 ]
Safadi, Hani [3 ]
机构
[1] Univ Notre Dame, Notre Dame, IN 46556 USA
[2] Univ Liechtenstein, FL-9490 Vaduz, Liechtenstein
[3] Univ Georgia, Athens, GA 30602 USA
关键词
grounded theory methodology; computational theory discovery; GTM; computational; trace data; theory development; lexicon; inductive; GROUNDED THEORY; INFORMATION-SYSTEMS; SOCIAL MEDIA; DATA SCIENCE; BIG DATA; EMERGENCE; ANALYTICS;
D O I
10.1287/isre.2018.0774
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
Increasingly abundant trace data provide an opportunity for information systems researchers to generate new theory. In this research commentary, we draw on the largely "manual" tradition of the grounded theory methodology and the highly "automated" process of computational theory discovery in the sciences to develop a general approach to computationally intensive theory development from trace data. This approach involves the iterative application of four general processes: sampling, synchronic analysis, lexical framing, and diachronic analysis. We provide examples from recent research in information systems.
引用
收藏
页码:50 / 64
页数:15
相关论文
共 50 条
  • [1] The Limits of Empiricism: A Critique of Data-Driven Theory Development
    Van Slyke, Craig
    Kamis, Arnold
    DATA BASE FOR ADVANCES IN INFORMATION SYSTEMS, 2024, 55 (02): : 119 - 145
  • [2] Computationally Intensive Theory Construction: A Primer for Authors and Reviewers
    Miranda, Shaila
    Berente, Nicholas
    Seidel, Stefan
    Safadi, Hani
    Burton-Jones, Andrew
    MIS QUARTERLY, 2022, 46 (02) : III - XVIII
  • [3] DECAS: a modern data-driven decision theory for big data and analytics
    Elgendy, Nada
    Elragal, Ahmed
    Paivarinta, Tero
    JOURNAL OF DECISION SYSTEMS, 2022, 31 (04) : 337 - 373
  • [4] Data-driven intensive care: a lack of comprehensive datasets
    Hardenberg, Jan-Hendrik B.
    MEDIZINISCHE KLINIK-INTENSIVMEDIZIN UND NOTFALLMEDIZIN, 2024, 119 (05) : 352 - 357
  • [5] Data-Driven Computing
    Kirchdoerfer, Trenton
    Ortiz, Michael
    ADVANCES IN COMPUTATIONAL PLASTICITY: A BOOK IN HONOUR OF D. ROGER J. OWEN, 2018, 46 : 165 - 183
  • [6] Advances in Smart Sustainable Urbanism: Data-Driven and Data-Intensive Scientific Approaches to Wicked Problems
    Bibri, Simon Elias
    4TH INTERNATIONAL CONFERENCE ON SMART CITY APPLICATIONS (SCA' 19), 2019,
  • [7] Data-Driven Meets Theory-Driven Research in the Era of Big Data: Opportunities and Challenges for Information Systems Research
    Maass, Wolfgang
    Parsons, Jeffrey
    Purao, Sandeep
    Storey, Veda C.
    Woo, Carson
    JOURNAL OF THE ASSOCIATION FOR INFORMATION SYSTEMS, 2018, 19 (12): : 1253 - 1273
  • [8] Data-driven computational mechanics
    Kirchdoerfer, T.
    Ortiz, M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 304 : 81 - 101
  • [9] The Myths of Data-Driven Campaigning
    Baldwin-Philippi, Jessica
    POLITICAL COMMUNICATION, 2017, 34 (04) : 627 - 633
  • [10] Data-driven computing in dynamics
    Kirchdoerfer, T.
    Ortiz, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 113 (11) : 1697 - 1710