Normal forms for lagrangian distributions on 5-dimensional contact manifolds

被引:6
作者
Alonso-Blanco, R. [1 ]
Manno, G. [2 ]
Pugliese, F. [3 ]
机构
[1] Univ Salamanca, Dept Matemat, E-37008 Salamanca, Spain
[2] Univ Salento, Dipartimento Matemat E De Giorgi, I-73100 Lecce, Italy
[3] Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, Italy
关键词
Contact manifolds; Lagrangian distributions; Characteristics of second order PDE's; Parabolic Monge-Ampere equations; EQUATIONS;
D O I
10.1016/j.difgeo.2008.06.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A contact distribution C on a manifold M determines a symplectic bundle C -> M. In this paper we find normal forms for its lagrangian distributions by classifying vector fields lying in C. Such vector fields are divided into three types and described in terms of the simplest ones (characteristic fields of 1st order PDE's). After having established the equivalence between parabolic Monge-Ampere equations (MAE's) and lagrangian distributions in terms of characteristics, as an application of our results we give normal forms for parabolic MAE's. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:212 / 229
页数:18
相关论文
共 7 条
[1]   The equations determining intermediate integrals for Monge-Ampere PDE [J].
Alonso-Blanco, RJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (08) :2357-2360
[2]   CHARACTERISTIC COHOMOLOGY OF DIFFERENTIAL-SYSTEMS .2. CONSERVATION-LAWS FOR A CLASS OF PARABOLIC EQUATIONS [J].
BRYANT, RL ;
GRIFFITHS, PA .
DUKE MATHEMATICAL JOURNAL, 1995, 78 (03) :531-676
[3]  
GOURSAT E., 1890, LECONS INTEGRATION E, V1
[4]  
KUSHNER A, 2007, CONTACT GEOMETRY N O
[5]  
Lychagin V.V., 1979, Russ. Math. Surv., V34, P149, DOI [10.1070/RM1979v034n01ABEH002873, 10.1070/rm1979v034n01abeh002873, DOI 10.1070/RM1979V034N01ABEH002873]
[6]  
MUNOZ J, 1982, ECUACIONES DIFERENCI, V1
[7]   On the contact linearization of Monge-Ampere equations [J].
Tunitskii, DV .
IZVESTIYA MATHEMATICS, 1996, 60 (02) :425-451