COMPUTATIONAL STUDY OF WAVE PROPAGATION IN SECOND-ORDER NONLINEAR PIEZOELECTRIC MEDIA

被引:0
|
作者
Hopkins, David A. [1 ]
Gazonas, George A. [1 ]
机构
[1] US Army, Res Lab, Weap & Mat Res Directorate, Aberdeen Proving Ground, MD 21005 USA
来源
DEVELOPMENTS IN STRATEGIC MATERIALS AND COMPUTATIONAL DESIGN II | 2011年 / 32卷
关键词
EQUATIONS;
D O I
暂无
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, we present computational results for the response of piezoelectric materials with 6mm symmetry when subjected to shock loads. The governing equations are based on a second-order theory of piezoelectricity for the 6mm crystal class formulated in a Lagrangian reference configuration. These equations represent the fully coupled nonlinear rnultiphysics response. Numerical solutions of these equations are first verified using analytical solutions for wave propagation in linear piezoelectric media. The effects of the nonlinear coupling introduced by higher order elastic, dielectric and piezoelectric coupling coefficients are then examined. The wave speed is shown to be lower than the bar velocity predicted by linear piezoelectricity for large strains.
引用
收藏
页码:165 / 174
页数:10
相关论文
共 50 条
  • [31] Second-order duality for nonlinear programming
    Yang, XM
    Yang, XQ
    Teo, KL
    Hou, SH
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (05): : 699 - 708
  • [32] Modeling of second-order nonlinear metasurfaces
    Achouri, Karim
    Kiselev, Andrei
    Martin, Olivier J. F.
    NEW JOURNAL OF PHYSICS, 2022, 24 (02):
  • [33] On a nonlinear second-order difference equation
    Stevo Stević
    Bratislav Iričanin
    Witold Kosmala
    Zdeněk Šmarda
    Journal of Inequalities and Applications, 2022
  • [34] FORCED SECOND-ORDER NONLINEAR OSCILLATION
    TEUFEL, H
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 40 (01) : 148 - &
  • [35] OSCILLATION OF NONLINEAR SECOND-ORDER EQUATIONS
    BOBISUD, LE
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 23 (03) : 501 - &
  • [36] Nonlinear Second-Order Topological Insulators
    Zangeneh-Nejad, Farzad
    Fleury, Romain
    PHYSICAL REVIEW LETTERS, 2019, 123 (05)
  • [37] Multiple-humped bright solitary waves in second-order nonlinear media
    Mihalache, D
    Lederer, F
    Mazilu, D
    Crasovan, LC
    OPTICAL ENGINEERING, 1996, 35 (06) : 1616 - 1623
  • [39] On a nonlinear second-order difference equation
    Stevic, Stevo
    Iricanin, Bratislav
    Kosmala, Witold
    Smarda, Zdenek
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [40] QUANTUM MECHANICAL STUDY ON NONLINEAR SECOND-ORDER OPTICAL SUSCEPTIBILITIES
    封继康
    高旭岭
    李君
    孙家钟
    ChineseScienceBulletin, 1990, (23) : 2022 - 2023