A note on existence of (anti-)periodic and heteroclinic solutions for a class of second-order odes

被引:26
作者
Wang, Kaizhi [1 ]
Li, Yong [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Anti-periodic solutions; Heteroclinic solutions; Leray-Schauder degree; Variational methods; NONMONOTONE EVOLUTION-EQUATIONS; NONLINEAR PARABOLIC EQUATIONS; LINEAR IMPACT OSCILLATORS; ANTIPERIODIC SOLUTIONS; DIFFERENTIAL-EQUATIONS; DISCONTINUOUS NONLINEARITIES; BOUNDARY-CONDITIONS; PERIODIC-SOLUTIONS; MOTIONS; TORUS;
D O I
10.1016/j.na.2008.02.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the existence of anti-periodic Solutions to the following second-order differential equation (q)double over dot = u(t, q) by using fixed point theory to-ether with the Green's function for the anti-periodic boundary value problem in the first part (Section 2) of the paper. Then in the next part (Section 3), we construct a kind of heteroclinic solution to some special cases of the equation above. Our method is variational in nature and is inspired by the ideas of Rabinowitz and Stredulinsky in [P. Rabinowitz. E. Stredulinsky, On sonic results of Moser and of Bangert, AIHP Anal. Nonlin. 21 (2004) 673-688]. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1711 / 1724
页数:14
相关论文
共 32 条
[1]   ANTIPERIODIC OSCILLATIONS OF SOME 2ND-ORDER DIFFERENTIAL-EQUATIONS AND OPTIMAL-CONTROL PROBLEMS [J].
AFTABIZADEH, AR ;
PAVEL, NH ;
HUANG, YK .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 52 (1-3) :3-21
[2]   NONLINEAR 3RD-ORDER DIFFERENTIAL-EQUATIONS WITH ANTIPERIODIC BOUNDARY-CONDITIONS AND SOME OPTIMAL-CONTROL PROBLEMS [J].
AFTABIZADEH, AR ;
HUANG, YK ;
PAVEL, NH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 192 (01) :266-293
[3]  
Aizicovici S, 1999, DISCRET CONTIN DYN S, V5, P35
[4]   Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities [J].
Aizicovici, S ;
McKibben, M ;
Reich, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 43 (02) :233-251
[5]   ANTIPERIODIC SOLUTIONS TO A CLASS OF NONLINEAR DIFFERENTIAL-EQUATIONS IN HILBERT-SPACE [J].
AIZICOVICI, S ;
PAVEL, NH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (02) :387-408
[6]  
ALTMAN M, 1957, B ACAD POL SCI, V5, P19
[7]  
BANGERT V, 1989, ANN I H POINCARE-AN, V6, P95
[8]   Periodic motions in impact oscillators with perfectly elastic bounces [J].
Bonheure, D ;
Fabry, C .
NONLINEARITY, 2002, 15 (04) :1281-1297
[9]   INTERMITTENCY IN IMPACT OSCILLATORS CLOSE TO RESONANCE [J].
BUDD, C ;
DUX, F .
NONLINEARITY, 1994, 7 (04) :1191-1224
[10]  
BUDD J, 1995, NATO ADV SCI I C, V644, P27