A classification of parabolic subgroups of classical groups with a finite number of orbits on the unipotent radical

被引:33
作者
Hille, L [1 ]
Röhrle, G
机构
[1] TU Chemnitz, Fak Math, D-09107 Chemnitz, Germany
[2] Univ Bielefeld, Fak Math, D-33615 Bielefeld, Germany
关键词
Finite Number; General Linear; Representation Theory; Classical Group; Topological Group;
D O I
10.1007/BF01236661
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a classical algebraic group defined over an algebraically closed field. We classify all instances when a parabolic subgroup P of G acts on its unipotent radical P-u, or on p(u), the Lie algebra of P-u, with only a finite number of orbits. The proof proceeds in two parts. First we obtain a reduction to the case of general linear groups. In a second step, a solution for these is achieved by studying the representation theory of a particular quiver with certain relations. Furthermore, for general linear groups we obtain a combinatorial formula for the number of orbits in the finite cases.
引用
收藏
页码:35 / 52
页数:18
相关论文
共 29 条
  • [1] Arnold VI, 1974, P ICM VANCOUVER, V1, P19
  • [2] COVERING-SPACES IN REPRESENTATION-THEORY
    BONGARTZ, K
    GABRIEL, P
    [J]. INVENTIONES MATHEMATICAE, 1982, 65 (03) : 331 - 378
  • [3] HOMOMORPHISM ABSTRACTS OF SIMPLE ALGEBRAIC GROUPS
    BOREL, A
    TITS, J
    [J]. ANNALS OF MATHEMATICS, 1973, 97 (03) : 499 - 571
  • [4] BOREL A, 1972, LINEAR ALGEBRAIC GRO
  • [5] BOURBAKI N, 1975, GROUPES ALGEBRES LIE, pCH4
  • [6] BRUSTLE T, 1997, ACTIONS PARABOLIC SU
  • [7] BRUSTLE T, 1998, BRUHAT CHEVALLEY ORD
  • [8] BURGSTEIN H, 1987, COMPOS MATH, V61, P3
  • [9] DLAB V, 1992, LONDON MATH SOC LECT, V168, P200
  • [10] GABRIEL P, 1991, ENCYCL MATH SCI, V73, P8