Effects of Er Additions on the Microstructure, Mechanical Properties, and Electrical Conductivity of the Al-0.4Fe-0.05Si Alloy

被引:8
作者
Guo, Weichun [1 ]
Chen, Xiaohong [1 ]
Liu, Ping [1 ]
Yu, Guoliang [2 ]
Fu, Shaoli [1 ]
Fan, Jun [1 ]
Zhou, Honglei [1 ]
Liu, Hang [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Mat Sci & Engn, 516 Jungong Rd, Shanghai, Peoples R China
[2] Shanghai Silin Special Equipment Engn Co Ltd, Room 2403,1 Lane 1098,Xinzha Rd, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
AA8000 series aluminum alloys; Al3Er; electrical conductivity; mechanical properties; Orowan mechanism; IMPURITY DIFFUSION; AL; FE; SI; EVOLUTION; AL3SC; SC; LA; BEHAVIOR; CE;
D O I
10.1002/adem.202000955
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effects of Er addition to the Al-Fe-Si alloy on phase composition, microstructure, electrical conductivity, and mechanical properties are studied. Formation of the Al3Fe, Al6Fe, Al3Er, ErSi and Al10Fe2Er intermetallic phases in the Al-Fe-Si-Er alloy is proved by optical microscope (OM), scanning electron microscope (SEM), and transmission electron microscope (TEM). The results show that the spherical Al3Er precipitates with a radius of less than 6.5 nm +/- 0.5 nm form a coherent phase boundary with alpha-Al. The recovery temperature range and the recrystallization temperature of Al-Fe-Si alloy with Er addition after 80% cold deformation is recorded by differential scanning calorimetry (DSC). After annealing at 260 degrees C for 1 h, the electrical conductivity of the rolled Al-0.4Fe-0.05Si-0.2Er alloy increases from 60.1 to 62.2 IACS%, and the hardness decreases from 50.5 to 36.6 HV. The average tensile properties of the Al-0.4Fe-0.05Si-0.2Er alloy are YS = 131 +/- 3 Mpa and ultimate tensile strength (UTS) = 142 +/- 3 MPa with 13 +/- 1% elongation after annealing at 260 degrees C for 1 h. The average radius of Al3Er precipitates in Al-0.4Fe-0.05Si-0.2Er is 7.8 +/- 0.2 nm, and its strengthening mechanism is Orowan mechanism.
引用
收藏
页数:10
相关论文
共 45 条
[1]  
Atkins A. G., 1984, J MECH WORK TECHNOL, V9, P224, DOI DOI 10.1016/0378-3804(84)90015-9
[2]   STRAIN ENERGY OF A COHERENT ELLIPSOIDAL PRECIPITATE [J].
BARNETT, DM ;
LEE, JK ;
AARONSON, HI ;
RUSSELL, KC .
SCRIPTA METALLURGICA, 1974, 8 (12) :1447-1450
[3]   Microstructure evolution in undercooled Al-8 wt%Fe melts: Comparison between terrestrial and parabolic flight conditions [J].
Chen, J. ;
Lengsdorf, R. ;
Henein, H. ;
Herlach, D. M. ;
Dahlborg, U. ;
Calvo-Dahlborg, M. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 556 :243-251
[4]   Cerium-based conversion layers on aluminum alloys [J].
Dabalà, M ;
Armelao, L ;
Buchberger, A ;
Calliari, I .
APPLIED SURFACE SCIENCE, 2001, 172 (3-4) :312-322
[5]   Effect of rare earth Y and Al-Ti-B master alloy on the microstructure and mechanical properties of 6063 aluminum alloy [J].
Ding, Wanwu ;
Zhao, Xiaoyan ;
Chen, Taili ;
Zhang, Haixia ;
Liu, Xiaoxiong ;
Cheng, Yan ;
Lei, Dongkai .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 830
[6]   Features of Structure and Property Formation for Hot-Deformed Materials of the Al-Si and Al-Si-C Systems Based on Mechanochemically Activated Charges [J].
Dyuzhechkin, M. K. ;
Sergeenko, S. N. ;
Popov, Yu. V. .
METALLURGIST, 2016, 59 (9-10) :835-842
[7]   ELECTRONIC, ELASTIC, AND FRACTURE PROPERTIES OF TRIALUMINIDE ALLOYS - AL3SC AND AL3TI [J].
FU, CL .
JOURNAL OF MATERIALS RESEARCH, 1990, 5 (05) :971-979
[8]   Impurity diffusion of scandium in aluminum [J].
Fujikawa, SI .
DEFECT AND DIFFUSION FORUM, 1997, 143 :115-120
[9]   Temporal evolution of the nanostructure of Al(Sc,Zr) alloys:: Part II-coarsening of Al3(Sc1-xZrx) precipitates [J].
Fuller, CB ;
Seldman, DN .
ACTA MATERIALIA, 2005, 53 (20) :5415-5428
[10]   The effects of cell spacing and distribution of intermetallic fibers on the mechanical properties of hypoeutectic Al-Fe alloys [J].
Goulart, Pedro R. ;
Spinelli, Jose E. ;
Cheung, Noe ;
Garcia, Amauri .
MATERIALS CHEMISTRY AND PHYSICS, 2010, 119 (1-2) :272-278