Dengue Baidu Search Index data can improve the prediction of local dengue epidemic: A case study in Guangzhou, China

被引:132
作者
Li, Zhihao [1 ]
Liu, Tao [1 ]
Zhu, Guanghu [1 ,2 ]
Lin, Hualiang [1 ]
Zhang, Yonghui [3 ]
He, Jianfeng [3 ]
Deng, Aiping [3 ]
Peng, Zhiqiang [3 ]
Xiao, Jianpeng [1 ]
Rutherford, Shannon [4 ]
Xie, Runsheng [1 ]
Zeng, Weilin [1 ]
Li, Xing [1 ]
Ma, Wenjun [1 ]
机构
[1] Guangdong Prov Ctr Dis Control & Prevent, Guangdong Prov Inst Publ Hlth, Guangzhou, Guangdong, Peoples R China
[2] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin, Peoples R China
[3] Guangdong Prov Ctr Dis Control & Prevent, Guangzhou, Guangdong, Peoples R China
[4] Griffith Univ, Ctr Environm & Populat Hlth, Brisbane, Qld, Australia
基金
中国国家自然科学基金;
关键词
QUERY DATA; SURVEILLANCE; TRANSMISSION; TEMPERATURE; DISEASE; VIRUS; TIME;
D O I
10.1371/journal.pntd.0005354
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Background Dengue fever (DF) in Guangzhou, Guangdong province in China is an important public health issue. The problem was highlighted in 2014 by a large, unprecedented outbreak. In order to respond in a more timely manner and hence better control such potential outbreaks in the future, this study develops an early warning model that integrates internet-based query data into traditional surveillance data. Methodology and principal findings A Dengue Baidu Search Index (DBSI) was collected from the Baidu website for developing a predictive model of dengue fever in combination with meteorological and demographic factors. Generalized additive models (GAM) with or without DBSI were established. The generalized cross validation (GCV) score and deviance explained indexes, intraclass correlation coefficient (ICC) and root mean squared error (RMSE), were respectively applied to measure the fitness and the prediction capability of the models. Our results show that the DBSI with one-week lag has a positive linear relationship with the local DF occurrence, and the model with DBSI (ICC: 0.94 and RMSE: 59.86) has a better prediction capability than the model without DBSI (ICC: 0.72 and RMSE: 203.29). Conclusions Our study suggests that a DSBI combined with traditional disease surveillance and meteorological data can improve the dengue early warning system in Guangzhou.
引用
收藏
页数:13
相关论文
共 54 条
[1]   A Critical Assessment of Vector Control for Dengue Prevention [J].
Achee, Nicole L. ;
Gould, Fred ;
Perkins, T. Alex ;
Reiner, Robert C., Jr. ;
Morrison, Amy C. ;
Ritchie, Scott A. ;
Gubler, Duane J. ;
Teyssou, Remy ;
Scott, Thomas W. .
PLOS NEGLECTED TROPICAL DISEASES, 2015, 9 (05)
[2]   Enhancing disease surveillance with novel data streams: challenges and opportunities [J].
Althouse, Benjamin M. ;
Scarpino, Samuel V. ;
Meyers, Lauren Ancel ;
Ayers, John W. ;
Bargsten, Marisa ;
Baumbach, Joan ;
Brownstein, John S. ;
Castro, Lauren ;
Clapham, Hannah ;
Cummings, Derek A. T. ;
Del Valle, Sara ;
Eubank, Stephen ;
Fairchild, Geoffrey ;
Finelli, Lyn ;
Generous, Nicholas ;
George, Dylan ;
Harper, David R. ;
Hebert-Dufresne, Laurent ;
Johansson, Michael A. ;
Konty, Kevin ;
Lipsitch, Marc ;
Milinovich, Gabriel ;
Miller, Joseph D. ;
Nsoesie, Elaine O. ;
Olson, Donald R. ;
Paul, Michael ;
Polgreen, Philip M. ;
Priedhorsky, Reid ;
Read, Jonathan M. ;
Rodriguez-Barraquer, Isabel ;
Smith, Derek J. ;
Stefansen, Christian ;
Swerdlow, David L. ;
Thompson, Deborah ;
Vespignani, Alessandro ;
Wesolowski, Amy .
EPJ DATA SCIENCE, 2015, 4 (01) :1-8
[3]   Prediction of Dengue Incidence Using Search Query Surveillance [J].
Althouse, Benjamin M. ;
Ng, Yih Yng ;
Cummings, Derek A. T. .
PLOS NEGLECTED TROPICAL DISEASES, 2011, 5 (08)
[4]   Projecting the impact of climate change on dengue transmission in Dhaka, Bangladesh [J].
Banu, Shahera ;
Hu, Wenbiao ;
Guo, Yuming ;
Hurst, Cameron ;
Tong, Shilu .
ENVIRONMENT INTERNATIONAL, 2014, 63 :137-142
[5]   The global distribution and burden of dengue [J].
Bhatt, Samir ;
Gething, Peter W. ;
Brady, Oliver J. ;
Messina, Jane P. ;
Farlow, Andrew W. ;
Moyes, Catherine L. ;
Drake, John M. ;
Brownstein, John S. ;
Hoen, Anne G. ;
Sankoh, Osman ;
Myers, Monica F. ;
George, Dylan B. ;
Jaenisch, Thomas ;
Wint, G. R. William ;
Simmons, Cameron P. ;
Scott, Thomas W. ;
Farrar, Jeremy J. ;
Hay, Simon I. .
NATURE, 2013, 496 (7446) :504-507
[6]   Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus [J].
Brady, Oliver J. ;
Gething, Peter W. ;
Bhatt, Samir ;
Messina, Jane P. ;
Brownstein, John S. ;
Hoen, Anne G. ;
Moyes, Catherine L. ;
Farlow, Andrew W. ;
Scott, Thomas W. ;
Hay, Simon I. .
PLOS NEGLECTED TROPICAL DISEASES, 2012, 6 (08)
[7]   When Google got flu wrong [J].
Butler, Declan .
NATURE, 2013, 494 (7436) :155-156
[8]   Using Web Search Query Data to Monitor Dengue Epidemics: A New Model for Neglected Tropical Disease Surveillance [J].
Chan, Emily H. ;
Sahai, Vikram ;
Conrad, Corrie ;
Brownstein, John S. .
PLOS NEGLECTED TROPICAL DISEASES, 2011, 5 (05)
[9]   Nanoscale Kerr Nonlinearity Enhancement Using Spontaneously Generated Coherence in Plasmonic Nanocavity [J].
Chen, Hongyi ;
Ren, Juanjuan ;
Gu, Ying ;
Zhao, Dongxing ;
Zhang, Junxiang ;
Gong, Qihuang .
SCIENTIFIC REPORTS, 2015, 5
[10]  
China Internet Network Information Center, 2014, 2013 CHIN SEARCH ENG