Brackets in representation algebras of Hopf algebras

被引:1
作者
Massuyeau, Gwenael [1 ,2 ]
Turaev, Vladimir [3 ]
机构
[1] Univ Bourgogne Franche Comte, IMB, F-21000 Dijon, France
[2] CNRS, F-21000 Dijon, France
[3] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
Poisson algebra; Hopf algebra; representation algebra; Gerstenhaber algebra; quasi-Poisson algebra; double Poisson algebra; POISSON STRUCTURES; MODULI SPACES; SURFACES; MANIFOLDS;
D O I
10.4171/JNCG/286
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any graded bialgebras A and B, we define a commutative graded algebra A(B) representing the functor of B-representations of A. When A is a cocommutative graded Hopf algebra and B is a commutative ungraded Hopf algebra, we introduce a method deriving a Gerstenhaber bracket in A(B) from a Fox pairing in A and a balanced biderivation in B. Our construction is inspired by Van den Bergh's non-commutative Poisson geometry, and may be viewed as an algebraic generalization of the Atiyah-Bott-Goldman Poisson structures on moduli spaces of representations of surface groups.
引用
收藏
页码:577 / 636
页数:60
相关论文
共 18 条
[1]   Quasi-Poisson manifolds [J].
Alekseev, A ;
Kosmann-Schwarzbach, Y ;
Meinrenken, E .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (01) :3-29
[2]   Polynomial identities and noncommutative versal torsors [J].
Aljadeff, Eli ;
Kassel, Christian .
ADVANCES IN MATHEMATICS, 2008, 218 (05) :1453-1495
[3]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[4]  
Bourbaki N., 1961, ELEMENTS MATH FASCIC, V1290
[5]   Poisson structures on moduli spaces of representations [J].
Crawley-Boevey, William .
JOURNAL OF ALGEBRA, 2011, 325 (01) :205-215
[7]   THE SYMPLECTIC NATURE OF FUNDAMENTAL-GROUPS OF SURFACES [J].
GOLDMAN, WM .
ADVANCES IN MATHEMATICS, 1984, 54 (02) :200-225
[8]  
Jantzen J. C., 2003, Math. Surveys Monogr., V107
[9]  
Li-Bland D, 2015, DOC MATH, V20, P1071
[10]  
Massuyeau G., 2017, MEM SOC MATH FRANCE, V154