Brackets in representation algebras of Hopf algebras

被引:1
作者
Massuyeau, Gwenael [1 ,2 ]
Turaev, Vladimir [3 ]
机构
[1] Univ Bourgogne Franche Comte, IMB, F-21000 Dijon, France
[2] CNRS, F-21000 Dijon, France
[3] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
Poisson algebra; Hopf algebra; representation algebra; Gerstenhaber algebra; quasi-Poisson algebra; double Poisson algebra; POISSON STRUCTURES; MODULI SPACES; SURFACES; MANIFOLDS;
D O I
10.4171/JNCG/286
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any graded bialgebras A and B, we define a commutative graded algebra A(B) representing the functor of B-representations of A. When A is a cocommutative graded Hopf algebra and B is a commutative ungraded Hopf algebra, we introduce a method deriving a Gerstenhaber bracket in A(B) from a Fox pairing in A and a balanced biderivation in B. Our construction is inspired by Van den Bergh's non-commutative Poisson geometry, and may be viewed as an algebraic generalization of the Atiyah-Bott-Goldman Poisson structures on moduli spaces of representations of surface groups.
引用
收藏
页码:577 / 636
页数:60
相关论文
共 18 条
  • [1] Quasi-Poisson manifolds
    Alekseev, A
    Kosmann-Schwarzbach, Y
    Meinrenken, E
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (01): : 3 - 29
  • [2] Polynomial identities and noncommutative versal torsors
    Aljadeff, Eli
    Kassel, Christian
    [J]. ADVANCES IN MATHEMATICS, 2008, 218 (05) : 1453 - 1495
  • [3] THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES
    ATIYAH, MF
    BOTT, R
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505): : 523 - 615
  • [4] Bourbaki N., 1961, ELEMENTS MATH FASCIC, V1290
  • [5] Poisson structures on moduli spaces of representations
    Crawley-Boevey, William
    [J]. JOURNAL OF ALGEBRA, 2011, 325 (01) : 205 - 215
  • [7] THE SYMPLECTIC NATURE OF FUNDAMENTAL-GROUPS OF SURFACES
    GOLDMAN, WM
    [J]. ADVANCES IN MATHEMATICS, 1984, 54 (02) : 200 - 225
  • [8] Jantzen J. C., 2003, Math. Surveys Monogr., V107
  • [9] Li-Bland D, 2015, DOC MATH, V20, P1071
  • [10] Massuyeau G., 2017, MEM SOC MATH FRANCE, V154