DataMeadow: a visual canvas for analysis of large-scale multivariate data

被引:38
|
作者
Elmqvist, Niklas [1 ]
Stasko, John [2 ,3 ]
Tsigas, Philippas [4 ]
机构
[1] Univ Paris Sud, INRIA, LRI, F-91465 Orsay, France
[2] Georgia Inst Technol, Sch Interact Comp, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, GVU Ctr, Atlanta, GA 30332 USA
[4] Chalmers Univ Technol, Dept Comp Sci & Engn, S-41296 Gothenburg, Sweden
关键词
Multivariate data; Visual analytics; Parallel coordinates; Dynamic queries; Progressive analysis; Starplots;
D O I
10.1057/palgrave.ivs.9500170
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Supporting visual analytics of multiple large-scale multidimensional data sets requires a high degree of interactivity and user control beyond the conventional challenges of visualizing such data sets. We present the DataMeadow, a visual canvas providing rich interaction for constructing visual queries using graphical set representations called DataRoses. A DataRose is essentially a starplot of selected columns in a data set displayed as multivariate visualizations with dynamic query sliders integrated into each axis. The purpose of the DataMeadow is to allow users to create advanced visual queries by iteratively selecting and filtering into the multidimensional data. Furthermore, the canvas provides a clear history of the analysis that can be annotated to facilitate dissemination of analytical results to stakeholders. A powerful direct manipulation interface allows for selection, filtering, and creation of sets, subsets, and data dependencies. We have evaluated our system using a qualitative expert review involving two visualization researchers. Results from this review are favorable for the new method. Information Visualization (2008) 7, 18-33. doi: 10.1057/palgrave.ivs.9500170
引用
收藏
页码:18 / 33
页数:16
相关论文
共 50 条
  • [41] Exploring gendered cycling behaviours within a large-scale behavioural data-set
    Beecham, Roger
    Wood, Jo
    TRANSPORTATION PLANNING AND TECHNOLOGY, 2014, 37 (01) : 83 - 97
  • [42] Large-Scale Data Mining to Optimize Patient-Centered Scheduling at Health Centers
    Kunjan, Kislaya
    Wu, Huanmei
    Toscos, Tammy R.
    Doebbeling, Bradley N.
    JOURNAL OF HEALTHCARE INFORMATICS RESEARCH, 2019, 3 (01) : 1 - 18
  • [43] VISUAL AND COGNITIVE ANALYSIS OF MULTIVARIATE DATA FOR CHARACTERIZING AL/SIC METAL MATRIX COMPOSITES
    Pak, Alexander Ya
    Zakharova, Alyona A.
    Shklyar, Alexei, V
    Pak, Tatyana A.
    LIGHT & ENGINEERING, 2019, 27 (05): : 72 - 81
  • [44] Large-Scale Data Mining to Optimize Patient-Centered Scheduling at Health Centers
    Kislaya Kunjan
    Huanmei Wu
    Tammy R. Toscos
    Bradley N. Doebbeling
    Journal of Healthcare Informatics Research, 2019, 3 : 1 - 18
  • [45] Biclusters Based Visual Exploration of Multivariate Scientific Data
    He, Xiangyang
    Tao, Yubo
    Wang, Qirui
    Lin, Hai
    2018 IEEE SCIENTIFIC VISUALIZATION CONFERENCE (SCIVIS), 2018, : 77 - 81
  • [46] Multivariate Cube for Representing Multivariable Data in Visual Analytics
    Hong Thi Nguyen
    Anh Van Thi Tran
    Tuyet Anh Thi Nguyen
    Luc Tan Vo
    Phuoc Vinh Tran
    CONTEXT-AWARE SYSTEMS AND APPLICATIONS (ICCASA 2016), 2017, 193 : 91 - 100
  • [47] Visual Neural Decomposition to Explain Multivariate Data Sets
    Knittel, Johannes
    Lalama, Andres
    Koch, Steffen
    Ertl, Thomas
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (02) : 1374 - 1384
  • [48] Visualization of Diversity in Large Multivariate Data Sets
    Pham, Tuan
    Hess, Rob
    Ju, Crystal
    Zhang, Eugene
    Metoyer, Ronald
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2010, 16 (06) : 1053 - 1062
  • [49] Rapid, Progressive Sub-Graph Explorations for Interactive Visual Analytics over Large-Scale Graph Datasets
    Armstrong, Samuel
    Bruhwiler, Kevin
    Pallickara, Sangmi Lee
    BDCAT'19: PROCEEDINGS OF THE 6TH IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES, 2019, : 1 - 10
  • [50] On visual analytics methods at modelling of ill-structured situations and large-scale systems based on cognitive maps
    Abramova, Nina
    Makarenko, Dmitry
    Portsev, Ruslan
    2017 TENTH INTERNATIONAL CONFERENCE MANAGEMENT OF LARGE-SCALE SYSTEM DEVELOPMENT (MLSD), 2017,