DataMeadow: a visual canvas for analysis of large-scale multivariate data

被引:38
|
作者
Elmqvist, Niklas [1 ]
Stasko, John [2 ,3 ]
Tsigas, Philippas [4 ]
机构
[1] Univ Paris Sud, INRIA, LRI, F-91465 Orsay, France
[2] Georgia Inst Technol, Sch Interact Comp, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, GVU Ctr, Atlanta, GA 30332 USA
[4] Chalmers Univ Technol, Dept Comp Sci & Engn, S-41296 Gothenburg, Sweden
关键词
Multivariate data; Visual analytics; Parallel coordinates; Dynamic queries; Progressive analysis; Starplots;
D O I
10.1057/palgrave.ivs.9500170
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Supporting visual analytics of multiple large-scale multidimensional data sets requires a high degree of interactivity and user control beyond the conventional challenges of visualizing such data sets. We present the DataMeadow, a visual canvas providing rich interaction for constructing visual queries using graphical set representations called DataRoses. A DataRose is essentially a starplot of selected columns in a data set displayed as multivariate visualizations with dynamic query sliders integrated into each axis. The purpose of the DataMeadow is to allow users to create advanced visual queries by iteratively selecting and filtering into the multidimensional data. Furthermore, the canvas provides a clear history of the analysis that can be annotated to facilitate dissemination of analytical results to stakeholders. A powerful direct manipulation interface allows for selection, filtering, and creation of sets, subsets, and data dependencies. We have evaluated our system using a qualitative expert review involving two visualization researchers. Results from this review are favorable for the new method. Information Visualization (2008) 7, 18-33. doi: 10.1057/palgrave.ivs.9500170
引用
收藏
页码:18 / 33
页数:16
相关论文
共 50 条
  • [11] Dynamic Collaborative Visualization Ecosystem to Support the Analysis of Large-Scale Disparate Data
    Koehler, Christopher
    Berger, Andrew
    Rajashekar, Raksha
    Wischgoll, Thomas
    Su, Simon
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 3968 - 3977
  • [12] LongLine: Visual Analytics System for Large-scale Audit Logs
    Yoo, Seunghoon
    Jo, Jaemin
    Kim, Bohyoung
    Seo, Jinwook
    VISUAL INFORMATICS, 2018, 2 (01): : 82 - 97
  • [13] Loom: Complex large-scale visual insight for large hybrid IT infrastructure management
    Brook, James
    Cuadrado, Felix
    Deliot, Eric
    Guijarro, Julio
    Hawkes, Rycharde
    Lotz, Marco
    Pascal, Romaric
    Sae-Lor, Suksant
    Vaquero, Luis M.
    Varvenne, Joan
    Wilcock, Lawrence
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 80 : 47 - 62
  • [14] Falcon: Visual analysis of large, irregularly sampled, and multivariate time series data in additive manufacturing
    Steed, Chad A.
    Halsey, William
    Dehoff, Ryan
    Yoder, Sean L.
    Paquit, Vincent
    Powers, Sarah
    COMPUTERS & GRAPHICS-UK, 2017, 63 : 50 - 64
  • [15] CKM: A Shared Visual Analytical Tool for Large-Scale Analysis of Audio-Video Interviews
    Xiao, Lu
    Luo, Yan
    High, Steven
    2013 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2013,
  • [16] Interactive visualization of large-scale gene expression data
    Riveiro, Maria
    Lebram, Mikael
    Andersson, Christian X.
    Sartipy, Peter
    Synnergren, Jane
    PROCEEDINGS 2016 20TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION IV 2016, 2016, : 348 - 354
  • [17] Visual software analytics for the build optimization of large-scale software systems
    Alexandru Telea
    Lucian Voinea
    Computational Statistics, 2011, 26 : 635 - 654
  • [18] Visual software analytics for the build optimization of large-scale software systems
    Telea, Alexandru
    Voinea, Lucian
    COMPUTATIONAL STATISTICS, 2011, 26 (04) : 635 - 654
  • [19] InSight2: A Modular Visual Analysis Platform for Network Situational Awareness in Large-Scale Networks
    Kodituwakku, Hansaka Angel Dias Edirisinghe
    Keller, Alex
    Gregor, Jens
    ELECTRONICS, 2020, 9 (10) : 1 - 15
  • [20] Association Analysis for Visual Exploration of Multivariate Scientific Data Sets
    Liu, Xiaotong
    Shen, Han-Wei
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (01) : 955 - 964