DataMeadow: a visual canvas for analysis of large-scale multivariate data

被引:38
|
作者
Elmqvist, Niklas [1 ]
Stasko, John [2 ,3 ]
Tsigas, Philippas [4 ]
机构
[1] Univ Paris Sud, INRIA, LRI, F-91465 Orsay, France
[2] Georgia Inst Technol, Sch Interact Comp, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, GVU Ctr, Atlanta, GA 30332 USA
[4] Chalmers Univ Technol, Dept Comp Sci & Engn, S-41296 Gothenburg, Sweden
关键词
Multivariate data; Visual analytics; Parallel coordinates; Dynamic queries; Progressive analysis; Starplots;
D O I
10.1057/palgrave.ivs.9500170
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Supporting visual analytics of multiple large-scale multidimensional data sets requires a high degree of interactivity and user control beyond the conventional challenges of visualizing such data sets. We present the DataMeadow, a visual canvas providing rich interaction for constructing visual queries using graphical set representations called DataRoses. A DataRose is essentially a starplot of selected columns in a data set displayed as multivariate visualizations with dynamic query sliders integrated into each axis. The purpose of the DataMeadow is to allow users to create advanced visual queries by iteratively selecting and filtering into the multidimensional data. Furthermore, the canvas provides a clear history of the analysis that can be annotated to facilitate dissemination of analytical results to stakeholders. A powerful direct manipulation interface allows for selection, filtering, and creation of sets, subsets, and data dependencies. We have evaluated our system using a qualitative expert review involving two visualization researchers. Results from this review are favorable for the new method. Information Visualization (2008) 7, 18-33. doi: 10.1057/palgrave.ivs.9500170
引用
收藏
页码:18 / 33
页数:16
相关论文
共 50 条
  • [1] DataMeadow: A visual canvas for analysis of large-scale multivariate data
    Elmqvist, Niklas
    Stasko, John
    Tsigas, Philippas
    VAST: IEEE SYMPOSIUM ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY 2007, PROCEEDINGS, 2007, : 187 - +
  • [2] PCNET: Exploratory Visual Analysis of Large-Scale Network
    Huang, Jian
    Wei, Yingmei
    Du, Xiaolei
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2016, : 200 - 205
  • [3] BANKSAFE: Visual analytics for big data in large-scale computer networks
    Fischer, Fabian
    Fuchs, Johannes
    Mansmann, Florian
    Keim, Daniel A.
    INFORMATION VISUALIZATION, 2015, 14 (01) : 51 - 61
  • [4] Visual Analytics to make sense of large-scale administrative and normative data
    Guarino, Alfonso
    Lettieri, Nicola
    Malandrino, Delfina
    Russo, Pietro
    Zaccagnino, Rocco
    2019 23RD INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV): BIOMEDICAL VISUALIZATION AND GEOMETRIC MODELLING & IMAGING, 2019, : 133 - 138
  • [5] Graph-based visual analysis for large-scale hydrological modeling
    Leonard, Lorne
    MacEachren, Alan M.
    Madduri, Kamesh
    INFORMATION VISUALIZATION, 2017, 16 (03) : 205 - 216
  • [6] Visual Analysis of Large Multivariate Scattered Data using Clustering and Probabilistic Summaries
    Rapp, Tobias
    Peters, Christoph
    Dachsbacher, Carsten
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (02) : 1580 - 1590
  • [7] Visual Analytics for Situation Awareness of a Large-Scale Network
    Horn, Chris
    Ellsworth, Chris
    2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 263 - 264
  • [8] Time analysis of regional structure of large-scale particle using an interactive visual system
    Zhang, Yihan
    Li, Guan
    Shan, Guihua
    VISUAL INFORMATICS, 2022, 6 (02) : 14 - 24
  • [9] Analysis guided visual exploration of multivariate data
    Yang, Di
    Rundensteiner, Elke A.
    Ward, Matthew O.
    VAST: IEEE SYMPOSIUM ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY 2007, PROCEEDINGS, 2007, : 83 - 90
  • [10] Ensemble Visual Analysis Architecture with High Mobility for Large-Scale Critical Infrastructure Simulations
    Eaglin, Todd
    Wang, Xiaoyu
    Ribarsky, William
    Tolone, William
    VISUALIZATION AND DATA ANALYSIS 2015, 2015, 9397