Glassy phases in organic semiconductors

被引:33
作者
Snyder, Chad R. [1 ]
DeLongchamp, Dean M. [1 ]
机构
[1] NIST, Mat Sci & Engn Div, 100 Bur Dr, Gaithersburg, MD 20899 USA
关键词
Organic semiconductor; Amorphous glass; Mesophase glass; Organic thin film transistors; Organic photovoltaics; Paracrystallinity; Glass transition; Phase diagram; VAPOR-DEPOSITED GLASSES; BULK-HETEROJUNCTION; TRANSITION-TEMPERATURES; CHARGE-TRANSPORT; DOMAIN PURITY; POLYMER-FILMS; RECOMBINATION; CRYSTALLINE; EFFICIENCY; MOBILITY;
D O I
10.1016/j.cossms.2018.03.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Organic semiconductors may be processed from fluids using graphical arts printing and patterning techniques to create complex circuitry. Because organic semiconductors are weak van der Waals solids, the creation of glassy phases during processing is quite common. Because structural disorder leads to electronic disorder, it is necessary to understand these phases to optimize and control the electronic properties of these materials. Here we review the significance of glassy phases in organic semiconductors. We examine challenges in the measurement of the glass transition temperature and the accurate classification of phases in these relatively rigid materials. Device implications of glassy phases are discussed. Processing schemes that are grounded in the principles of glass physics and sound glass transition temperature measurement will more quickly achieve desired structure and electronic characteristics, accelerating the exciting progress of organic semiconductor technology development.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 69 条
[1]  
[Anonymous], ROYAL SOC CHEM
[2]  
[Anonymous], LIQUID CRYSTALLINE M
[3]   The Importance of Fullerene Percolation in the Mixed Regions of Polymer-Fullerene Bulk Heterojunction Solar Cells [J].
Bartelt, Jonathan A. ;
Beiley, Zach M. ;
Hoke, Eric T. ;
Mateker, William R. ;
Douglas, Jessica D. ;
Collins, Brian A. ;
Tumbleston, John R. ;
Graham, Kenneth R. ;
Amassian, Aram ;
Ade, Harald ;
Frechet, Jean M. J. ;
Toney, Michael F. ;
McGehee, Michael D. .
ADVANCED ENERGY MATERIALS, 2013, 3 (03) :364-374
[4]   Dependence of Electrical Performance on Structural Organization in Polymer Field Effect Transistors [J].
Bittle, Emily G. ;
Ro, Hyun Wook ;
Snyder, Chad R. ;
Engmann, Sebastian ;
Kline, R. Joseph ;
Zhang, Xinran ;
Jurchescu, Oana D. ;
DeLongchamp, Dean M. ;
Gundlach, David J. .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2017, 55 (14) :1063-1074
[5]   Toward a rational design of poly(2,7-carbazole) derivatives for solar cells [J].
Blouin, Nicolas ;
Michaud, Alexandre ;
Gendron, David ;
Wakim, Salem ;
Blair, Emily ;
Neagu-Plesu, Rodica ;
Belletete, Michel ;
Durocher, Gilles ;
Tao, Ye ;
Leclerc, Mario .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (02) :732-742
[6]   PARAKRISTALLINE STRUKTUREN IN POLYATHYLENTEREPHTHALAT (PET) [J].
BONART, R .
KOLLOID-ZEITSCHRIFT AND ZEITSCHRIFT FUR POLYMERE, 1966, 213 (1-2) :1-&
[7]  
Bunau G. V., 1970, JB BIRKSPHOTOPHYSICS, V74, P1294
[8]   Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open-Circuit Voltage of Organic Solar Cells [J].
Burke, Timothy M. ;
Sweetnam, Sean ;
Vandewal, Koen ;
McGehee, Michael D. .
ADVANCED ENERGY MATERIALS, 2015, 5 (11)
[9]   How High Local Charge Carrier Mobility and an Energy Cascade in a Three-Phase Bulk Heterojunction Enable >90% Quantum Efficiency [J].
Burke, Timothy M. ;
McGehee, Michael D. .
ADVANCED MATERIALS, 2014, 26 (12) :1923-1928
[10]   Thickness-dependent thermal transition temperatures in thin conjugated polymer films [J].
Campoy-Quiles, M. ;
Sims, M. ;
Etchegoin, P. G. ;
Bradley, D. D. C. .
MACROMOLECULES, 2006, 39 (22) :7673-7680