AKEA: An Arabic Keyphrase Extraction Algorithm

被引:5
|
作者
Amer, Eslam [1 ]
Foad, Khaled [2 ]
机构
[1] Banha Univ, Fac Comp & Informat, Dept Comp Sci, Banha, Egypt
[2] Banha Univ, Fac Comp & Informat, Dept Informat Syst, Banha, Egypt
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2016 | 2017年 / 533卷
关键词
Keyphrase extraction; Natural language processing; SYSTEM;
D O I
10.1007/978-3-319-48308-5_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Keyphrase extraction is a critical step in many natural language processing and Information retrieval applications. In this paper, we introduce AKEA, a keyphrase extraction algorithm for single Arabic documents. AKEA is an unsupervised algorithm as it does not need any type of training in order to achieve its task. We rely on heuristics that collaborate linguistic patterns based on Part-Of-Speech (POS) tags, statistical knowledge, and the internal structural pattern of terms (i.e. word-occurrence). We employ the usage of Arabic Wikipedia to improve the ranking (or significance) of candidate keyphrases by adding a confidence score if the candidate exist as an indexed Wikipedia concept. Experimental results show that on average AKEA has the highest precision value, the highest F-measure value which indicates it presents more accurate results compared to its other algorithms
引用
收藏
页码:137 / 146
页数:10
相关论文
共 50 条
  • [41] Automatic keyphrase extraction from scientific articles
    Su Nam Kim
    Olena Medelyan
    Min-Yen Kan
    Timothy Baldwin
    Language Resources and Evaluation, 2013, 47 : 723 - 742
  • [42] A Framework for Keyphrase Extraction from Scientific Journals
    Daudaravicius, Vidas
    SEMANTICS, ANALYTICS, VISUALIZATION: ENHANCING SCHOLARLY DATA, SAVE-SD 2016, 2016, 9792 : 51 - 66
  • [43] Deep Text Mining for Automatic Keyphrase Extraction from Text Documents
    Abulaish, Muhammad
    Jahiruddin
    Dey, Lipika
    JOURNAL OF INTELLIGENT SYSTEMS, 2011, 20 (04) : 327 - 351
  • [44] A SUPERVISED LEARNING APPROACH FOR AUTOMATIC KEYPHRASE EXTRACTION
    Abulaish, Muhammad
    Anwar, Tarique
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2012, 8 (11): : 7579 - 7601
  • [45] Keyphrase Extraction Using PageRank and Word Features
    Le, Huong T.
    Bui, Que X.
    2021 RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES (RIVF 2021), 2021, : 257 - 261
  • [46] Microblog Keyphrase Extraction Based on Similarity Features
    Liao, Lizi
    Huang, Heyan
    PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND ELECTRONICS INFORMATION (ICACSEI 2013), 2013, 41 : 284 - 287
  • [47] Automatic keyphrase extraction from scientific articles
    Kim, Su Nam
    Medelyan, Olena
    Kan, Min-Yen
    Baldwin, Timothy
    LANGUAGE RESOURCES AND EVALUATION, 2013, 47 (03) : 723 - 742
  • [48] KPCatcher A Keyphrase Extraction System for Enterprise Videos
    Xi, Yongxin Taylor
    Paulik, Matthias
    Gadde, Venkata Ramana
    Sankar, Ananth
    14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 1905 - 1909
  • [49] NamedKeys: Unsupervised Keyphrase Extraction for Biomedical Documents
    Gero, Zelalem
    Ho, Joyce C.
    ACM-BCB'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, 2019, : 328 - 337
  • [50] Local word vectors guiding keyphrase extraction
    Papagiannopoulou, Eirini
    Tsoumakas, Grigorios
    INFORMATION PROCESSING & MANAGEMENT, 2018, 54 (06) : 888 - 902