AKEA: An Arabic Keyphrase Extraction Algorithm

被引:5
|
作者
Amer, Eslam [1 ]
Foad, Khaled [2 ]
机构
[1] Banha Univ, Fac Comp & Informat, Dept Comp Sci, Banha, Egypt
[2] Banha Univ, Fac Comp & Informat, Dept Informat Syst, Banha, Egypt
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2016 | 2017年 / 533卷
关键词
Keyphrase extraction; Natural language processing; SYSTEM;
D O I
10.1007/978-3-319-48308-5_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Keyphrase extraction is a critical step in many natural language processing and Information retrieval applications. In this paper, we introduce AKEA, a keyphrase extraction algorithm for single Arabic documents. AKEA is an unsupervised algorithm as it does not need any type of training in order to achieve its task. We rely on heuristics that collaborate linguistic patterns based on Part-Of-Speech (POS) tags, statistical knowledge, and the internal structural pattern of terms (i.e. word-occurrence). We employ the usage of Arabic Wikipedia to improve the ranking (or significance) of candidate keyphrases by adding a confidence score if the candidate exist as an indexed Wikipedia concept. Experimental results show that on average AKEA has the highest precision value, the highest F-measure value which indicates it presents more accurate results compared to its other algorithms
引用
收藏
页码:137 / 146
页数:10
相关论文
共 50 条
  • [1] Applying Deep Learning for Arabic Keyphrase Extraction
    Helmy, Muhammad
    Vigneshram, R. M.
    Serra, Giuseppe
    Tasso, Carlo
    ARABIC COMPUTATIONAL LINGUISTICS, 2018, 142 : 254 - 261
  • [2] TripleRank: An unsupervised keyphrase extraction algorithm
    Li, Tuohang
    Hu, Liang
    Li, Hongtu
    Sun, Chengyu
    Li, Shuai
    Chi, Ling
    KNOWLEDGE-BASED SYSTEMS, 2021, 219 (219)
  • [3] Leveraging Arabic Morphology and Syntax for Achieving Better Keyphrase Extraction
    Helmy, Muhammad
    De Nart, Dario
    Degl'Innocenti, Dante
    Tasso, Carlo
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2016, : 340 - 343
  • [4] Automatic Arabic Text Summarization Using Clustering and Keyphrase Extraction
    Fejer, Hamzah Noori
    Omar, Nazlia
    PROCEEDINGS OF THE 2014 6TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND MULTIMEDIA (ICIM), 2014, : 293 - 298
  • [5] Towards Building a Standard Dataset for Arabic Keyphrase Extraction Evaluation
    Helmy, Muhammad
    Basaldella, Marco
    Maddalena, Eddy
    Mizzaro, Stefano
    Demartinit, Gianluca
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2016, : 26 - 29
  • [6] Geoscience keyphrase extraction algorithm using enhanced word embedding
    Qiu, Qinjun
    Xie, Zhong
    Wu, Liang
    Li, Wenjia
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 125 : 157 - 169
  • [7] Automatic keyphrase extraction for Arabic news documents based on KEA system
    Duwairi, Rehab
    Hedaya, Mona
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (04) : 2101 - 2110
  • [8] KP-Miner: A keyphrase extraction system for English and Arabic documents
    El-Beltagy, Samhaa R.
    Rafea, Ahmed
    INFORMATION SYSTEMS, 2009, 34 (01) : 132 - 144
  • [9] Stop-words in Keyphrase Extraction Problem
    Popova, S.
    Kovriguina, L.
    Mouromtsev, D.
    Khodyrev, I.
    2013 14TH CONFERENCE OF OPEN INNOVATIONS ASSOCIATION (FRUCT), 2013, : 113 - 121
  • [10] Automatic keyphrase extraction: a survey and trends
    Merrouni, Zakariae Alami
    Frikh, Bouchra
    Ouhbi, Brahim
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2020, 54 (02) : 391 - 424