Computable criteria for ballisticity of random walks in elliptic random environment

被引:0
作者
Ramirez, Alejandro F. [1 ]
Ribeiro, Rodrigo [2 ]
机构
[1] Univ Catolica Chile NYU Shanghai, Shanghai, Peoples R China
[2] Univ Colorado Boulder, Boulder, CO 80309 USA
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2022年 / 27卷
关键词
random walks; random environments; ballisticity; criteria; BEHAVIOR;
D O I
10.1214/22-EJP856
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider random walks in i.i.d. elliptic random environments which are not uniformly elliptic. We introduce a computable condition in dimension d = 2 and a general condition valid for dimensions d >= 2 expressed in terms of the exit time from a box, which ensure that local trapping would not inhibit a ballistic behavior of the random walk. An important technical innovation related to our computable condition, is the introduction of a geometrical point of view to classify the way in which the random walk can become trapped, either in an edge, a wedge or a square. Furthermore, we prove that the general condition we introduce is sharp.
引用
收藏
页数:38
相关论文
共 14 条
  • [1] Effective Polynomial Ballisticity Conditions for Random Walk in Random Environment
    Berger, Noam
    Drewitz, Alexander
    Ramirez, Alejandro F.
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (12) : 1947 - 1973
  • [2] Sharp ellipticity conditions for ballistic behavior of random walks in random environment
    Bouchet, Elodie
    Ramirez, Alejandro F.
    Sabot, Christophe
    [J]. BERNOULLI, 2016, 22 (02) : 969 - 994
  • [3] Ellipticity criteria for ballistic behavior of random walks in random environment
    Campos, David
    Ramirez, Alejandro F.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2014, 160 (1-2) : 189 - 251
  • [4] Local trapping for elliptic random walks in random environments in Zd
    Fribergh, Alexander
    Kious, Daniel
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2016, 165 (3-4) : 795 - 834
  • [5] Fukushima R., 2020, STOCHASTIC ANAL LARG, VB79
  • [6] A Proof of Sznitman's Conjecture about Ballistic RWRE
    Guerra, Enrique
    Ramirez, Alejandro F.
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (10) : 2087 - 2103
  • [7] Lyons R., 2016, PROBABILITY TREES NE
  • [8] New examples of ballistic RWRE in the low disorder regime
    Ramirez, Alejandro F.
    Saglietti, Santiago
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [9] Sabot C., 2017, Ann. Fac. Sci. Toulouse Math., V26, P463
  • [10] Reversed Dirichlet environment and directional transience of random walks in Dirichlet environment
    Sabot, Christophe
    Tournier, Laurent
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (01): : 1 - 8