Vortex soliton in (2+1)-dimensional -symmetric nonlinear couplers with gain and loss

被引:0
|
作者
Zhu, Hai-Ping [1 ]
Pan, Zhen-Huan [2 ]
机构
[1] Lishui Univ, Coll Ecol, Lishui 323000, Zhejiang, Peoples R China
[2] Lishui Univ, Coll Engn & Design, Lishui 323000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
PT-symmetric nonlinear couplers; (2+1)-Dimensional coupled nonlinear Schrodinger equation; Vortex soliton; QUINTIC SCHRODINGER-EQUATION; AKHMEDIEV BREATHER; WAVE-GUIDES; POTENTIALS; BRIGHT; MEDIA; MODEL;
D O I
10.1007/s11071-015-2405-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We study the coupled nonlinear Schrodinger equation in the (2+1)-dimensional inhomogeneous -symmetric nonlinear couplers and obtain-symmetric and -antisymmetric vortex soliton solutions. The dynamical behaviors of the completely localized structures (vortex solitons) are analytically and numerically investigated in a diffraction decreasing system with exponential profile. Numerical results indicate that one vortex soliton with different topological charges can stably propagate a long distance. The space between two humps and the modulation depth of vortex solitons add when the topological charge increases. However, the change tendency of the amplitude and width of vortex solitons is same with the increase in topological charge.
引用
收藏
页码:1325 / 1330
页数:6
相关论文
共 50 条
  • [21] TWIN CORE NONLINEAR COUPLERS WITH GAIN AND LOSS
    CHEN, YJ
    SNYDER, AW
    PAYNE, DN
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1992, 28 (01) : 239 - 245
  • [22] Brownian motion effects on W-shaped soliton and modulation instability gain of the (2+1)-dimensional nonlinear schrodinger equation
    Abbagari, Souleymanou
    Nyawo, Pelerine Tsogni
    Houwe, Alphonse
    Inc, Mustafa
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (01)
  • [23] Constructing (2+1)-dimensional nonlinear soliton equations with a generalized zero curvature equation
    Yu, Fajun
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 201 (1-2) : 739 - 746
  • [24] Mechanisms of nonlinear wave transitions in the (2+1)-dimensional generalized breaking soliton equation
    Fu-Fu Ge
    Shou-Fu Tian
    Nonlinear Dynamics, 2021, 105 : 1753 - 1764
  • [25] Localized coherent soliton structures in a generalized (2+1)-dimensional nonlinear Schrodinger system
    Zheng, CL
    Sheng, ZM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (22-24): : 4407 - 4414
  • [26] An integrable (2+1)-dimensional nonlinear Schrodinger system and its optical soliton solutions
    Hosseini, K.
    Sadri, K.
    Mirzazadeh, M.
    Salahshour, S.
    OPTIK, 2021, 229
  • [27] Diverse Soliton Structures of the (2+1)-Dimensional Nonlinear Electrical Transmission Line Equation
    Li, Peng-Fei
    Wang, Kang-Jia
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [28] Mechanisms of nonlinear wave transitions in the (2+1)-dimensional generalized breaking soliton equation
    Ge, Fu-Fu
    Tian, Shou-Fu
    NONLINEAR DYNAMICS, 2021, 105 (02) : 1753 - 1764
  • [29] Soliton solutions in the conformable (2+1)-dimensional chiral nonlinear Schrödinger equation
    Behzad Ghanbari
    J. F. Gómez-Aguilar
    Ahmet Bekir
    Journal of Optics, 2022, 51 : 289 - 316
  • [30] Darboux transformation and soliton solutions of the (2+1)-dimensional derivative nonlinear Schrodinger hierarchy
    Wen, Li-Li
    Zhang, Hai-Qiang
    NONLINEAR DYNAMICS, 2016, 84 (02) : 863 - 873