On the bi-Sobolev planar homeomorphisms and their approximation

被引:11
作者
Pratelli, Aldo [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-90158 Erlangen, Germany
关键词
Bi-Sobolev homeomorphisms; Smooth approximation;
D O I
10.1016/j.na.2016.07.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first goal of this paper is to give a short description of the planar bi-Sobolev homeomorphisms, providing simple and self-contained proofs for some already known properties. In particular, for any such homeomorphism u : Omega -> Delta, one has Du(x)= 0 for almost every point x for which J(u)(x) = 0. As a consequence, one can prove that integral(Omega) vertical bar Du vertical bar = integral(Delta) vertical bar Du(-1)vertical bar. (8) Notice that this estimate holds trivially if one is allowed to use the change of variables formula, but this is not always the case for a bi-Sobolev homeomorphism. As a corollary of our construction, we will show that any W-1,W-1 homeomorphism u with W-1,W-1 inverse can be approximated with smooth diffeomorphisms (or piecewise affine homeomorphisms) u(n), in such a way that u(n) converges to u in W-1,W-1 and, at the same time, u(n)(-1) converges to u(-1) in W-1,W-1. This positively answers an open conjecture (see for instance Iwaniec et al. (2011), Question 4) for the case p = 1. (C) 2016 Published by Elsevier Ltd.
引用
收藏
页码:258 / 268
页数:11
相关论文
共 13 条
[1]  
Ball JM, 2010, CISM COUR L, V516, P1
[2]   Homeomorphisms in the Sobolev space W1,n-1 [J].
Csornyei, Marianna ;
Hencl, Stanislav ;
Maly, Jan .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 644 :221-235
[3]   Bi-Sobolev homeomorphism with zero Jacobian almost everywhere [J].
D'Onofrio, Luigi ;
Hencl, Stanislav ;
Schiattarella, Roberta .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 51 (1-2) :139-170
[4]   Smooth approximation of bi-Lipschitz orientation-preserving homeomorphisms [J].
Daneri, Sara ;
Pratelli, Aldo .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (03) :567-589
[5]   ANISOTROPIC SOBOLEV HOMEOMORPHISMS [J].
Di Gironimo, Patrizia ;
D'Onofrio, Luigi ;
Sbordone, Carlo ;
Schiattarella, Roberta .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (02) :593-602
[6]   Regularity of the inverse of a planar Sobolev homeomorphism [J].
Hencl, S ;
Koskela, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (01) :75-95
[7]  
Hencl S, 2014, LECT NOTES MATH, V2096, P1, DOI 10.1007/978-3-319-03173-6
[8]   Bi-Sobolev mappings and elliptic equations in the plane [J].
Hencl, S. ;
Moscariello, G. ;
di Napoli, A. Passarelli ;
Sbordone, C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (01) :22-32
[9]  
Hencl S., 2014, J EUR MATH IN PRESS
[10]   Hopf Differentials and Smoothing Sobolev Homeomorphisms [J].
Iwaniec, Tadeusz ;
Kovalev, Leonid V. ;
Onninen, Jani .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (14) :3256-3277