Grand challenges in space synthetic biology

被引:50
作者
Menezes, Amor A. [1 ]
Montague, Michael G. [2 ]
Cumbers, John [3 ]
Hogan, John A. [4 ]
Arkin, Adam P. [1 ,5 ,6 ]
机构
[1] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94704 USA
[2] Applicat Vital Knowledge, Frederick, MD 21702 USA
[3] NASA, Ames Res Ctr, Ames Space Portal, Moffett Field, CA 94035 USA
[4] NASA, Ames Res Ctr, Bioengn Branch, Moffett Field, CA 94035 USA
[5] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94704 USA
关键词
resource utilization; manufacturing; life support; space medicine; space cybernetics; terraforming; NITROGEN REMOVAL; MARS;
D O I
10.1098/rsif.2015.0803
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth.
引用
收藏
页数:7
相关论文
共 58 条
[1]  
Acevedo Fernando, 2000, EJB Electronic Journal of Biotechnology, V3, P1
[2]  
Allen J, 1996, LIFE SUPPORT BIOSPH, V4, P95
[3]   Environmentally controlled invasion of cancer cells by engineered bacteria [J].
Anderson, JC ;
Clarke, EJ ;
Arkin, AP ;
Voigt, CA .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 355 (04) :619-627
[4]   Programmable Ligand Detection System in Plants through a Synthetic Signal Transduction Pathway [J].
Antunes, Mauricio S. ;
Morey, Kevin J. ;
Smith, J. Jeff ;
Albrecht, Kirk D. ;
Bowen, Tessa A. ;
Zdunek, Jeffrey K. ;
Troupe, Jared F. ;
Cuneo, Matthew J. ;
Webb, Colleen T. ;
Hellinga, Homme W. ;
Medford, June I. .
PLOS ONE, 2011, 6 (01)
[5]   Enabling plant synthetic biology through genome engineering [J].
Baltes, Nicholas J. ;
Voytas, Daniel F. .
TRENDS IN BIOTECHNOLOGY, 2015, 33 (02) :120-131
[6]  
Bertoldi M., 1983, Waste Management Research, V1, P157, DOI [10.1177/0734242X8300100118, DOI 10.1177/0734242X8300100118, 10.1016/0734-242X(83)90055-1]
[7]   Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile [J].
Buffie, Charlie G. ;
Bucci, Vanni ;
Stein, Richard R. ;
McKenney, Peter T. ;
Ling, Lilan ;
Gobourne, Asia ;
No, Daniel ;
Liu, Hui ;
Kinnebrew, Melissa ;
Viale, Agnes ;
Littmann, Eric ;
van den Brink, Marcel R. M. ;
Jenq, Robert R. ;
Taur, Ying ;
Sander, Chris ;
Cross, Justin R. ;
Toussaint, Nora C. ;
Xavier, Joao B. ;
Pamer, Eric G. .
NATURE, 2015, 517 (7533) :205-U207
[8]   Novel perspectives for the engineering of abiotic stress tolerance in plants [J].
Cabello, Julieta V. ;
Lodeyro, Anabella F. ;
Zurbriggen, Matias D. .
CURRENT OPINION IN BIOTECHNOLOGY, 2014, 26 :62-70
[9]  
Carothers James M, 2013, Syst Synth Biol, V7, P79, DOI 10.1007/s11693-013-9118-2
[10]   Synthetic geomicrobiology: engineering microbe-mineral interactions for space exploration and settlement [J].
Cockell, Charles S. .
INTERNATIONAL JOURNAL OF ASTROBIOLOGY, 2011, 10 (04) :315-324