Advances in hyperspectral remote sensing of vegetation traits and functions

被引:62
作者
Zhang, Yongguang [1 ,2 ,3 ]
Migliavacca, Mirco [4 ]
Penuelas, Josep [5 ,6 ]
Ju, Weimin [1 ,2 ,3 ]
机构
[1] Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ, Jiangsu Prov Key Lab Geog Informat Technol, Key Lab Land Satellite Remote Sensing Applicat, Minist Nat Resources,Sch Geog & Ocean Sci, Nanjing 210023, Jiangsu, Peoples R China
[3] Minist Educ, Huangshan Pk Ecosyst Observat & Res Stn, Beijing, Peoples R China
[4] Max Planck Inst Biogeochem, Hans Knoll Str 10, D-07745 Jena, Germany
[5] UAB, CSIC, CREAF, Global Ecol Unit, Bellaterra 08193, Catalonia, Spain
[6] CREAF, Cerdanyola Del Valles 08193, Catalonia, Spain
关键词
Remote sensing; Hyperspectral; Satellite; Solar-induced fluorescence (SIF) of chlorophyll; Vegetation traits and functions; CHLOROPHYLL FLUORESCENCE; PHOTOSYNTHETIC CAPACITY; REFLECTANCE;
D O I
10.1016/j.rse.2020.112121
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The functions and traits of plants are key to understanding and predicting the adaptation of ecosystems to environmental changes. Remote sensing has been used to monitor the status of vegetation across multiple spatial and temporal scales. The remote sensing of vegetation is now undergoing a paradigm shift from monitoring structural parameters to monitoring functional traits. In particular, recent advances in hyperspectral techniques of remote sensing provide an opportunity to map vegetation traits and functions over a range of scales. In this editorial, we first present the background of the recent advances in the remote sensing of vegetation traits and functions and solar-induced fluorescence (SIF) of chlorophyll. We then summarize eight of the papers in this special issue that focus on new remote-sensing techniques and algorithms developed for retrieving plant functional traits, such as pigment and nitrogen contents and functional parameters. These contributions cover two major scientific themes: (1) estimating and monitoring plant traits and functions and (2) interpreting and understanding remotely sensed SIF signals. The research in this special issue will improve the development of the satellite remote sensing of plant traits and functions, allowing for improved estimation of vegetation processes such as photosynthesis and its associated water and carbon cycles.
引用
收藏
页数:5
相关论文
共 46 条
  • [1] Sun-Induced Chlorophyll Fluorescence II: Review of Passive Measurement Setups, Protocols, and Their Application at the Leaf to Canopy Level
    Aasen, Helge
    Van Wittenberghe, Shari
    Medina, Neus Sabater
    Damm, Alexander
    Goulas, Yves
    Wieneke, Sebastian
    Hueni, Andreas
    Malenovsky, Zbynek
    Alonso, Luis
    Pacheco-Labrador, Javier
    Pilar Cendrero-Mateo, M.
    Tomelleri, Enrico
    Burkart, Andreas
    Cogliati, Sergio
    Rascher, Uwe
    Mac Arthur, Alasdair
    [J]. REMOTE SENSING, 2019, 11 (08):
  • [2] ABDELBAKY MA, 2019, REMOTE SENS ENVIRON, P236, DOI DOI 10.1016/J.RSE.2018.05.035
  • [3] Retrieval of seasonal Rubisco-limited photosynthetic capacity at global FLUXNET sites from hyperspectral satellite remote sensing: Impact on carbon modelling
    Alton, Paul B.
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2017, 232 : 74 - 88
  • [4] [Anonymous], 2013, ATMOS MEAS TECH, DOI DOI 10.5194/AMT-6-207-2013
  • [5] Nocturnal Light Emitting Diode Induced Fluorescence (LEDIF): A new technique to measure the chlorophyll a fluorescence emission spectral distribution of plant canopies in situ
    Atherton, Jon
    Liu, Weiwei
    Porcar-Castell, Albert
    [J]. REMOTE SENSING OF ENVIRONMENT, 2019, 231
  • [6] Extending the SCOPE model to combine optical reflectance and soil moisture observations for remote sensing of ecosystem functioning under water stress conditions
    Bayat, Bagher
    van der Tol, Christiaan
    Yang, Peiqi
    Verhoef, Wouter
    [J]. REMOTE SENSING OF ENVIRONMENT, 2019, 221 : 286 - 301
  • [7] Radiative transfer Vcmax estimation from hyperspectral imagery and SIF retrievals to assess photosynthetic performance in rainfed and irrigated plant phenotyping trials
    Camino, Carlos
    Gonzalez-Dugo, Victoria
    Hernandez, Pilar
    Zarco-Tejada, Pablo J.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2019, 231
  • [8] Continuous and long-term measurements of reflectance and sun-induced chlorophyll fluorescence by using novel automated field spectroscopy systems
    Cogliati, S.
    Rossini, M.
    Julitta, T.
    Meroni, M.
    Schickling, A.
    Burkart, A.
    Pinto, F.
    Rascher, U.
    Colombo, R.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2015, 164 : 270 - 281
  • [9] The global distribution of leaf chlorophyll content
    Croft, H.
    Chen, J. M.
    Wang, R.
    Mo, G.
    Luo, S.
    Luo, X.
    He, L.
    Gonsamo, A.
    Arabian, J.
    Zhang, Y.
    Simic-Milas, A.
    Noland, T. L.
    He, Y.
    Homolova, L.
    Malenovsky, Z.
    Yi, Q.
    Beringer, J.
    Amiri, R.
    Hutley, L.
    Arellano, P.
    Stahl, C.
    Bonal, D.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2020, 236
  • [10] Remote sensing of plant-water relations: An overview and future perspectives
    Damm, A.
    Paul-Limoges, E.
    Haghighi, E.
    Simmer, C.
    Morsdorf, F.
    Schneider, F. D.
    van der Tol, C.
    Migliavacca, M.
    Rascher, U.
    [J]. JOURNAL OF PLANT PHYSIOLOGY, 2018, 227 : 3 - 19