ON A PRODUCT-TYPE OPERATOR FROM WEIGHTED BERGMAN-NEVANLINNA SPACES TO WEIGHTED ZYGMUND SPACES ON THE UNIT DISK

被引:0
作者
Jiang, Zhi Jie [1 ]
Bai, Hong Bin [2 ]
Li, Zuo An [3 ]
机构
[1] Sichuan Univ Sci & Engn, Inst Nonlinear Sci & Engn, Zigong 643000, Sichuan, Peoples R China
[2] Sichuan Univ Sci & Engn, Sch Sci, Zigong 643000, Sichuan, Peoples R China
[3] Sichuan Univ Sci & Engn, Sch Comp Sci, Zigong 643000, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Weighted Bergman-Nevanlinna spaces; product-type operators; weighted Zygmund spaces; little weighted Zygmund spaces; BLOCH-TYPE SPACE; H-INFINITY; DIFFERENTIATION OPERATORS; NORM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let = {z is an element of C : vertical bar z vertical bar < 1} be the open unit disk, phi an analytic self-mapping of D and psi an analytic function in D. Let D be the differentiation operator and W-phi,W-psi the weighted composition operator. The boundedness and compactness of the product-type operator W phi,psi D from weighted Bergman-Nevanlinna spaces to weighted Zygmund spaces on B are characterized.
引用
收藏
页码:447 / 458
页数:12
相关论文
共 54 条