Investigating the optimal method to generalize an ultra-low-dose amyloid PET/MRI deep learning network across scanner models

被引:0
作者
Chen, K. T. [1 ]
Schuerer, M. [2 ]
Ouyang, J. [1 ]
Gong, E. [3 ]
Tiepolt, S. [2 ]
Sabri, O. [2 ]
Zaharchuk, G. [1 ]
Barthel, H. [2 ]
机构
[1] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[2] Univ Leipzig, Dept Nucl Med, Leipzig, Germany
[3] Subtle Med Inc, Menlo Pk, CA USA
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BPS06-2
引用
收藏
页码:113 / 114
页数:2
相关论文
共 4 条
[1]  
[Anonymous], 2010, IEEE T KNOWL DATA EN
[2]  
[Anonymous], 2017, ARXIV170200288
[3]  
Chen KT, 2019, RADIOLOGY
[4]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241