Comparison of Microbial Community and Metabolites in Four Stomach Compartments of Myostatin-Gene-Edited and Non-edited Cattle

被引:9
作者
Zhou, Xinyu [1 ,2 ]
Gu, Mingjuan [1 ,2 ]
Zhu, Lin [1 ,2 ]
Wu, Di [1 ,2 ]
Yang, Miaomiao [1 ,2 ]
Gao, Yajie [1 ,2 ]
Wang, Xueqiao [1 ,2 ]
Bai, Chunling [1 ,2 ]
Wei, Zhuying [1 ,2 ]
Yang, Lei [1 ,2 ]
Li, Guangpeng [1 ,2 ]
机构
[1] Inner Mongolia Univ, State Key Lab Reprod Regulat & Breeding Grassland, Hohhot, Peoples R China
[2] Inner Mongolia Univ, Sch Life Sci, Hohhot, Peoples R China
关键词
myostatin; stomach; microbiome; metabolome; cattle; gene edit; SPECTROMETRY DATA; GUT MICROBIOTA; EXPRESSION; ALIGNMENT; PROTEIN; GENOME; DIET; CELL;
D O I
10.3389/fmicb.2022.844962
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Myostatin (MSTN), a major negative regulator of skeletal muscle mass and an endocrine factor, can regulate the metabolism of various organisms. Inhibition of the MSTN gene can improve meat production from livestock. Rumen microorganisms are associated with production and health traits of cattle, but changes in the microbial composition and metabolome in the four stomach compartments of MSTN gene-edited cattle have not previously been studied. Our results indicated that microbial diversity and dominant bacteria in the four stomach compartments were very similar between MSTN gene-edited and wild-type (WT) cattle. The microbiota composition was significantly different between MSTN gene-edited and WT cattle. Our results show that the relative abundance of the phylum Proteobacteria in the reticulum of MSTN gene-edited cattle was lower than that of WT cattle, whereas the relative abundance of the genus Prevotella in the omasum of MSTN gene-edited cattle was significantly higher than that of WT cattle. Metabolomics analysis revealed that the intensity of L-proline and acetic acid was significantly different in the rumen, reticulum, and abomasum between the two types of cattle. Meanwhile, pathway topology analysis indicated that the differential metabolites were predominantly involved in arginine biosynthesis and glutamate metabolism in the rumen, reticulum, and omasum but were mainly involved in pyruvate metabolism and glycolysis/gluconeogenesis in the abomasum. Spearman correlation network analysis further demonstrated that there was a significant correlation between microflora composition and metabolic pathways. These findings provide clues for studying nutrient digestion and absorption ability of MSTN gene-edited cattle.
引用
收藏
页数:13
相关论文
共 58 条
[51]   Comparing the Microbial Community in Four Stomach of Dairy Cattle, Yellow Cattle and Three Yak Herds in Qinghai-Tibetan Plateau [J].
Xin, Jinwei ;
Chai, Zhixin ;
Zhang, Chengfu ;
Zhang, Qiang ;
Zhu, Yong ;
Cao, Hanwen ;
Zhong, Jincheng ;
Ji, Qiumei .
FRONTIERS IN MICROBIOLOGY, 2019, 10
[52]   Proteomics insights into the effects of MSTN on muscle glucose and lipid metabolism in genetically edited cattle [J].
Xin, Xiang-Bo ;
Yang, Shu-Ping ;
Li, Xin ;
Liu, Xin-Feng ;
Zhang, Lin-Lin ;
Ding, Xiang-Bin ;
Zhang, Sheng ;
Li, Guang-Peng ;
Guo, Hong .
GENERAL AND COMPARATIVE ENDOCRINOLOGY, 2020, 291
[53]   Microbial diversity in the rumen, reticulum, omasum, and abomasum of yak on a rapid fattening regime in an agro-pastoral transition zone [J].
Xue, Dan ;
Chen, Huai ;
Luo, Xiaolin ;
Guan, Jiuqiang ;
He, Yixin ;
Zhao, Xinquan .
JOURNAL OF MICROBIOLOGY, 2018, 56 (10) :734-743
[54]  
Yang Shuping, 2018, Oncotarget, V9, P11352, DOI 10.18632/oncotarget.24250
[55]   Efficient TALEN-mediated myostatin gene editing in goats [J].
Yu, Baoli ;
Lu, Rui ;
Yuan, Yuguo ;
Zhang, Ting ;
Song, Shaozheng ;
Qi, Zhengqiang ;
Shao, Bin ;
Zhu, Mengmin ;
Mi, Fei ;
Cheng, Yong .
BMC DEVELOPMENTAL BIOLOGY, 2016, 16
[56]   Comparative metabolomics reveals the metabolic variations between two endangered Taxus species (T. fuana and T. yunnanensis) in the Himalayas [J].
Yu, Chunna ;
Luo, Xiujun ;
Zhan, Xiaori ;
Hao, Juan ;
Zhang, Lei ;
Song, Yao-Bin L. ;
Shen, Chenjia ;
Dong, Ming .
BMC PLANT BIOLOGY, 2018, 18
[57]  
Ze XL, 2012, ISME J, V6, P1535, DOI 10.1038/ismej.2012.4
[58]   Ab initio gene identification in metagenomic sequences [J].
Zhu, Wenhan ;
Lomsadze, Alexandre ;
Borodovsky, Mark .
NUCLEIC ACIDS RESEARCH, 2010, 38 (12) :e132