Inferring the Allelic Series at QTL in Multiparental Populations

被引:9
作者
Crouse, Wesley L. [1 ,2 ]
Kelada, Samir N. P. [2 ,3 ]
Valdar, William [2 ,4 ]
机构
[1] Univ N Carolina, Curriculum Bioinformat & Computat Biol, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Marsico Lung Inst, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
关键词
multiparental population; MPP; multi-parent advanced generation inter-cross; MAGIC; haplotype association; Bayesian nonparametric statistics; Ewens’ s sampling formula; QUANTITATIVE TRAIT LOCI; COLLAPSED GIBBS SAMPLERS; GENETIC-ANALYSIS; COLLABORATIVE CROSS; GENOME; MODEL; ASSOCIATION; INFERENCE; NUMBER; PARAMETERS;
D O I
10.1534/genetics.120.303393
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Multiparental populations (MPPs) are experimental populations in which the genome of every individual is a mosaic of known founder haplotypes. These populations are useful for detecting quantitative trait loci (QTL) because tests of association can leverage inferred founder haplotype descent. It is difficult, however, to determine how haplotypes at a locus group into distinct functional alleles, termed the allelic series. The allelic series is important because it provides information about the number of causal variants at a QTL and their combined effects. In this study, we introduce a fully Bayesian model selection framework for inferring the allelic series. This framework accounts for sources of uncertainty found in typical MPPs, including the number and composition of functional alleles. Our prior distribution for the allelic series is based on the Chinese restaurant process, a relative of the Dirichlet process, and we leverage its connection to the coalescent to introduce additional prior information about haplotype relatedness via a phylogenetic tree. We evaluate our approach via simulation and apply it to QTL from two MPPs: the Collaborative Cross (CC) and the Drosophila Synthetic Population Resource (DSPR). We find that, although posterior inference of the exact allelic series is often uncertain, we are able to distinguish biallelic QTL from more complex multiallelic cases. Additionally, our allele-based approach improves haplotype effect estimation when the true number of functional alleles is small. Our method, Tree-Based Inference of Multiallelism via Bayesian Regression (TIMBR), provides new insight into the genetic architecture of QTL in MPPs. Multiparent populations are experimental populations generated by breeding together a genetically diverse set of inbred founder strains to produce individuals whose genomes are random mosaics of the founder haplotypes.....
引用
收藏
页码:957 / 983
页数:27
相关论文
共 79 条
[1]  
Abramowitz M., 1972, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, V10th
[2]   Sequence Polymorphisms Cause Many False cis eQTLs [J].
Alberts, Rudi ;
Terpstra, Peter ;
Li, Yang ;
Breitling, Rainer ;
Nap, Jan-Peter ;
Jansen, Ritsert C. .
PLOS ONE, 2007, 2 (07)
[3]   THE PSEUDO-MARGINAL APPROACH FOR EFFICIENT MONTE CARLO COMPUTATIONS [J].
Andrieu, Christophe ;
Roberts, Gareth O. .
ANNALS OF STATISTICS, 2009, 37 (02) :697-725
[4]   Bayesian Inference of the Evolution of a Phenotype Distribution on a Phylogenetic Tree [J].
Ansari, M. Azim ;
Didelot, Xavier .
GENETICS, 2016, 204 (01) :89-+
[5]   Genetic analysis of complex traits in the emerging Collaborative Cross [J].
Aylor, David L. ;
Valdar, William ;
Foulds-Mathes, Wendy ;
Buus, Ryan J. ;
Verdugo, Ricardo A. ;
Baric, Ralph S. ;
Ferris, Martin T. ;
Frelinger, Jeff A. ;
Heise, Mark ;
Frieman, Matt B. ;
Gralinski, Lisa E. ;
Bell, Timothy A. ;
Didion, John D. ;
Hua, Kunjie ;
Nehrenberg, Derrick L. ;
Powell, Christine L. ;
Steigerwalt, Jill ;
Xie, Yuying ;
Kelada, Samir N. P. ;
Collins, Francis S. ;
Yang, Ivana V. ;
Schwartz, David A. ;
Branstetter, Lisa A. ;
Chesler, Elissa J. ;
Miller, Darla R. ;
Spence, Jason ;
Liu, Eric Yi ;
McMillan, Leonard ;
Sarkar, Abhishek ;
Wang, Jeremy ;
Wang, Wei ;
Zhang, Qi ;
Broman, Karl W. ;
Korstanje, Ron ;
Durrant, Caroline ;
Mott, Richard ;
Iraqi, Fuad A. ;
Pomp, Daniel ;
Threadgill, David ;
de Villena, Fernando Pardo-Manuel ;
Churchill, Gary A. .
GENOME RESEARCH, 2011, 21 (08) :1213-1222
[6]  
Beaumont MA, 2003, GENETICS, V164, P1139
[7]   Testing for dependence on tree structures [J].
Behr, Merle ;
Ansari, M. Azim ;
Munk, Axel ;
Holmes, Chris .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (18) :9787-9792
[8]  
Berestycki N., 2009, ENSAIOS MATEMATICOS, V16, P1
[9]   CONDITIONAL EXPECTATION AND UNBIASED SEQUENTIAL ESTIMATION [J].
BLACKWELL, D .
ANNALS OF MATHEMATICAL STATISTICS, 1947, 18 (01) :105-110
[10]  
Blei DM, 2011, J MACH LEARN RES, V12, P2461