Economic load dispatch using memory based differential evolution

被引:24
作者
Parouha, Raghav Prasad [1 ]
Das, Kedar Nath [2 ]
机构
[1] VIT Univ, Dept Math, Vellore, Tamil Nadu, India
[2] NIT Silchar Assam, Dept Math, Silchar, Assam, India
关键词
differential evolution; mutation; crossover; economic load dispatch problem; PARTICLE SWARM OPTIMIZATION; ALGORITHM; PSO;
D O I
10.1504/IJBIC.2018.091700
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many variants of differential evolution (DE) algorithm and its hybrid versions exist in the literature to solve economic load dispatch (ELD) problem. However, the performance of DE is highly affected by the inappropriate choice of its operators like mutation and crossover. Moreover, in general practice, DE does not employ any strategy of memorising the best results obtained so far in the initial part of the previous cycle. An attempt is made in this paper to propose a 'memory-based DE (MBDE)' where two 'swarm operators' have been introduced. These operators based on the pBEST and gBEST mechanism of particle swarm optimisation (PSO). The proposed MBDE is tested over four different power test systems of ELD problem with varying complexities. Numerical, statistical and graphical analysis reveals the competency of the proposed MBDE.
引用
收藏
页码:159 / 170
页数:12
相关论文
共 34 条
[1]   Economic dispatch using an efficient real-coded genetic algorithm [J].
Amjady, N. ;
Nasiri-Rad, H. .
IET GENERATION TRANSMISSION & DISTRIBUTION, 2009, 3 (03) :266-278
[2]  
[Anonymous], INT C MACH LEARN COM
[3]   Performance assessment of PSO, DE and hybrid PSO-DE algorithms when applied to the dispatch of generation and demand [J].
Araujo, Thais de Fatima ;
Uturbey, Wadaed .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2013, 47 :205-217
[4]   An Algorithm for Many-Objective Optimization with Reduced Objective Computations: A Study in Differential Evolution [J].
Bandyopadhyay, Sanghamitra ;
Mukherjee, Arpan .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2015, 19 (03) :400-413
[5]   Inducing Niching Behavior in Differential Evolution Through Local Information Sharing [J].
Biswas, Subhodip ;
Kundu, Souvik ;
Das, Swagatam .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2015, 19 (02) :246-263
[6]   Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels [J].
Chiang, CL .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (04) :1690-1699
[7]   Recent advances in differential evolution - An updated survey [J].
Das, Swagatam ;
Mullick, Sankha Subhra ;
Suganthan, P. N. .
SWARM AND EVOLUTIONARY COMPUTATION, 2016, 27 :1-30
[8]   Differential Evolution: A Survey of the State-of-the-Art [J].
Das, Swagatam ;
Suganthan, Ponnuthurai Nagaratnam .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (01) :4-31
[9]  
Deb K., 1995, OPTIMIZATION ENG DES
[10]   A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms [J].
Derrac, Joaquin ;
Garcia, Salvador ;
Molina, Daniel ;
Herrera, Francisco .
SWARM AND EVOLUTIONARY COMPUTATION, 2011, 1 (01) :3-18