Altered sterol composition renders yeast thermotolerant

被引:322
作者
Caspeta, Luis [1 ]
Chen, Yun [1 ]
Ghiaci, Payam [2 ]
Feizi, Amir [1 ]
Buskov, Steen [3 ]
Hallstrom, Bjorn M. [4 ]
Petranovic, Dina [1 ,2 ]
Nielsen, Jens [1 ,2 ,5 ]
机构
[1] Chalmers Univ Technol, Novo Nordisk Fdn Ctr Biosustainabil, SE-41296 Gothenburg, Sweden
[2] Chalmers Unvers Technol, Dept Chem & Biol Engn, SE-41296 Gothenburg, Sweden
[3] Novozymes, Analyt Sci, DK-4400 Kalundborg, Denmark
[4] Royal Inst Technol, Sci Life Lab, SE-17121 Stockholm, Sweden
[5] Novo Nordisk Fdn Ctr Biosustainabil, DK-2970 Horsholm, Denmark
基金
欧洲研究理事会;
关键词
SACCHAROMYCES-CEREVISIAE; CYTOCHROME DEFICIENCY; ENZYMATIC-HYDROLYSIS; ETHANOL-PRODUCTION; PROTEIN; RAFTS;
D O I
10.1126/science.1258137
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ethanol production for use as a biofuel is mainly achieved through simultaneous saccharification and fermentation by yeast. Operating at >= 40 degrees C would be beneficial in terms of increasing efficiency of the process and reducing costs, but yeast does not grow efficiently at those temperatures. We used adaptive laboratory evolution to select yeast strains with improved growth and ethanol production at >= 40 degrees C. Sequencing of the whole genome, genome-wide gene expression, and metabolic-flux analyses revealed a change in sterol composition, from ergosterol to fecosterol, caused by mutations in the C-5 sterol desaturase gene, and increased expression of genes involved in sterol biosynthesis. Additionally, large chromosome III rearrangements and mutations in genes associated with DNA damage and respiration were found, but contributed less to the thermotolerant phenotype.
引用
收藏
页码:75 / 78
页数:4
相关论文
共 30 条
[1]   High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? [J].
Abdel-Banat, Babiker M. A. ;
Hoshida, Hisashi ;
Ano, Akihiko ;
Nonklang, Sanom ;
Akada, Rinji .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 85 (04) :861-867
[2]   Solving ethanol production problems with genetically modified yeast strains [J].
Abreu-Cavalheiro, A. ;
Monteiro, G. .
BRAZILIAN JOURNAL OF MICROBIOLOGY, 2013, 44 (03) :665-671
[3]  
Amorim HV, 2010, ACS SYM SER, V1058, P73
[4]  
[Anonymous], ARCHAEA
[5]   Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol [J].
Caspeta, Luis ;
Caro-Bermudez, Mario A. ;
Ponce-Noyola, Teresa ;
Martinez, Alfredo .
APPLIED ENERGY, 2014, 113 :277-286
[6]   Economic and environmental impacts of microbial biodiesel [J].
Caspeta, Luis ;
Nielsen, Jens .
NATURE BIOTECHNOLOGY, 2013, 31 (09) :789-793
[7]   The role of biofuels in the future energy supply [J].
Caspeta, Luis ;
Buijs, Nicolaas A. A. ;
Nielsen, Jens .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1077-1082
[8]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[9]   Evolutionary insight from whole-genome sequencing of experimentally evolved microbes [J].
Dettman, Jeremy R. ;
Rodrigue, Nicolas ;
Melnyk, Anita H. ;
Wong, Alex ;
Bailey, Susan F. ;
Kassen, Rees .
MOLECULAR ECOLOGY, 2012, 21 (09) :2058-2077
[10]  
Dufourc Erick J, 2008, J Chem Biol, V1, P63, DOI 10.1007/s12154-008-0010-6