Metabolic Engineering toward Sustainable Production of Nylon-6

被引:87
|
作者
Turk, Stefan C. H. J. [1 ]
Kloosterman, Wigard P. [1 ,2 ]
Ninaber, Dennis K. [1 ,3 ]
Kolen, Karin P. A. M. [1 ]
Knutova, Julia [1 ]
Suir, Erwin [1 ,4 ]
Schurmann, Martin [5 ]
Raemakers-Franken, Petronella C. [5 ]
Muller, Monika [5 ]
de Wildeman, Stefaan M. A. [5 ]
Raamsdonk, Leonie M. [1 ]
van der Pol, Ruud [1 ]
Wu, Liang [1 ]
Temudo, Margarida F. [1 ]
van der Hoeven, Rob A. M. [1 ]
Akeroyd, Michiel [1 ]
van der Stoel, Roland E. [6 ]
Noorman, Henk J. [1 ]
Bovenberg, Roel A. L. [1 ,7 ]
Trefzer, Axel C. [1 ,8 ]
机构
[1] DSM Biotechnol Ctr, POB 1, NL-2600 MA Delft, Netherlands
[2] Univ Med Ctr Utrecht, POB 85060, NL-3508 AB Utrecht, Netherlands
[3] Leiden Univ, Med Ctr, NL-2333 ZA Leiden, Netherlands
[4] BioscienZ, NL-4817 MV Breda, Netherlands
[5] DSM Innovat Synth, NL-6160 MD Geleen, Netherlands
[6] DSM Fibre Intermediates, NL-6130 AA Sittard, Netherlands
[7] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, Synthet Biol & Cell Engn, NL-9747 AG Groningen, Netherlands
[8] GeneArt, Life Technol, D-93059 Regensburg, Germany
来源
ACS SYNTHETIC BIOLOGY | 2016年 / 5卷 / 01期
关键词
nylon-6; caprolactam; metabolic engineering; 6-aminocaproic acid; alpha-ketopimelate; adipate; ADIPIC ACID; COENZYME B; CORYNEBACTERIUM-GLUTAMICUM; PROTEIN EXPRESSION; ESCHERICHIA-COLI; BULK CHEMICALS; AMINO-ACIDS; CLONING; BIOSYNTHESIS; IDENTIFICATION;
D O I
10.1021/acssynbio.5b00129
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Nylon-6 is a bulk polymer used for many applications. It consists of the non-natural building block 6-aminocaproic acid, the linear form of caprolactam. Via a retro-synthetic approach, two synthetic pathways were identified for the fermentative production of 6-aminocaproic acid. Both pathways require yet unreported novel biocatalytic steps. We demonstrated proof of these bioconversions by in vitro enzyme assays with a set of selected candidate proteins expressed in Escherichia coli. One of the biosynthetic pathways starts with 2-oxoglutarate and contains bioconversions of the ketoacid elongation pathway known from methanogenic archaea. This pathway was selected for implementation in E. coli and yielded 6-aminocaproic acid at levels up to 160 mg/L in lab-scale batch fermentations. The total amount of 6-aminocaproic acid and related intermediates generated by this pathway exceeded 2 g/L in lab-scale fed-batch fermentations, indicating its potential for further optimization toward large-scale sustainable production of nylon-6.
引用
收藏
页码:65 / 73
页数:9
相关论文
共 50 条
  • [21] Metabolic engineering of Yarrowia lipolytica for heterologous oleanolic acid production
    Li, Dashuai
    Wu, Yufen
    Wei, Panpan
    Gao, Xiao
    Li, Man
    Zhang, Chuanbo
    Zhou, Zhijiang
    Lu, Wenyu
    CHEMICAL ENGINEERING SCIENCE, 2020, 218
  • [22] Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery
    Baritugo, Kei-Anne
    Kim, Hee Taek
    David, Yokimiko
    Choi, Jong-il
    Hong, Soon Ho
    Jeong, Ki Jun
    Choi, Jong Hyun
    Joo, Jeong Chan
    Park, Si Jae
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2018, 102 (09) : 3915 - 3937
  • [23] Two routes for tyrosol production by metabolic engineering of Corynebacterium glutamicum
    Junker, Nora
    Poethe, Sara-Sophie
    Wendisch, Volker F.
    BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, 2025, 18 (01):
  • [24] Enhanced production of polysialic acid by metabolic engineering of Escherichia coli
    Chen, Fang
    Tao, Yong
    Jin, Cheng
    Xu, Yang
    Lin, Bai-Xue
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (06) : 2603 - 2611
  • [25] Efficient production of guanosine in Escherichia coli by combinatorial metabolic engineering
    Zhang, Kun
    Qin, Mengxing
    Hou, Yu
    Zhang, Wenwen
    Wang, Zhenyu
    Wang, Hailei
    MICROBIAL CELL FACTORIES, 2024, 23 (01)
  • [26] Application of metabolic engineering for the biotechnological production of L-valine
    Oldiges, Marco
    Eikmanns, Bernhard J.
    Blombach, Bastian
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (13) : 5859 - 5870
  • [27] Multilevel Metabolic Engineering of Bacillus amyloliquefaciens for Production of the Platform Chemical Putrescine from Sustainable Biomass Hydrolysates
    Li, Lu
    Zou, Dian
    Ji, Anying
    He, Yuxuan
    Liu, Yingli
    Deng, Yu
    Chen, Shouwen
    Wei, Xuetuan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (05): : 2147 - 2157
  • [28] Metabolic engineering of Escherichia coli for high-specificity production of isoprenol and prenol as next generation of biofuels
    Zheng, Yanning
    Liu, Qiang
    Li, Lingling
    Qin, Wen
    Yang, Jianming
    Zhang, Haibo
    Jiang, Xinglin
    Cheng, Tao
    Liu, Wei
    Xu, Xin
    Xian, Mo
    BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
  • [29] Metabolic flux analysis and metabolic engineering for polyhydroxybutyrate (PHB) production
    Subramanian, Bhargavi
    Basak, Souvik
    Thirumurugan, Rithanya
    Saleena, Lilly M.
    POLYMER BULLETIN, 2024, 81 (12) : 10589 - 10608
  • [30] Toward glycerol biorefinery: metabolic engineering for the production of biofuels and chemicals from glycerol
    Chen, Zhen
    Liu, Dehua
    BIOTECHNOLOGY FOR BIOFUELS, 2016, 9