Robust Kalman filter design for discrete-time systems with Markovian jumping parameters

被引:0
作者
Lee, CM [1 ]
Fong, IK [1 ]
机构
[1] Natl Taiwan Univ, Taipei 10617, Taiwan
来源
SICE 2003 ANNUAL CONFERENCE, VOLS 1-3 | 2003年
关键词
Markovian; Kalman filter; algebraic Riccati equations; LMI;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the robust Kalman filtering problem for uncertain discrete-time linear systems with Markovian jumping parameters is addressed. It is assumed that the information about the jumping parameters is available, and the uncertainties are formulated by linear fractional transformation. We propose two methods for designing Markovian jumping filters so that the covariance of estimation error is bounded above. The main results are presented via a set of algebraic Riccati equations and a set of linear matrix inequalities.
引用
收藏
页码:1110 / 1115
页数:6
相关论文
共 20 条
[1]  
Anderson B., 1979, OPTIMAL FILTERING
[2]   Optimal robust filtering with time-varying parameter uncertainty [J].
Bolzern, P ;
Colaneri, P ;
DeNicolao, G .
INTERNATIONAL JOURNAL OF CONTROL, 1996, 63 (03) :557-576
[3]  
Boyd S., 1994, LINEAR MATRIX INEQUA, DOI https://doi.org/10.1109/jproc.1998.735454
[4]  
COSTA OLV, 1991, PROCEEDINGS OF THE 30TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, P2761, DOI 10.1109/CDC.1991.261860
[5]  
Costa OLV, 2000, IEEE DECIS CONTR P, P1177, DOI 10.1109/CDC.2000.912014
[6]  
DESOUZA CE, 1969, P 36 IEEE C DEC CONT, P2181
[7]   Control of singularly perturbed systems with Markovian jump parameters:: an H∞ approach [J].
Dragan, V ;
Shi, P ;
Boukas, EK .
AUTOMATICA, 1999, 35 (08) :1369-1378
[8]   THE FILTERING PROBLEM FOR CONTINUOUS-TIME LINEAR-SYSTEMS WITH MARKOVIAN SWITCHING COEFFICIENTS [J].
DUFOUR, F ;
BERTRAND, P .
SYSTEMS & CONTROL LETTERS, 1994, 23 (06) :453-461
[9]   STOCHASTIC STABILITY PROPERTIES OF JUMP LINEAR-SYSTEMS [J].
FENG, XB ;
LOPARO, KA ;
JI, YD ;
CHIZECK, HJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (01) :38-53
[10]  
Gahinet P., 1995, LMI Control Toolbox