Viscosity approximation methods for fixed-points problems

被引:909
作者
Moudafi, A [1 ]
机构
[1] Univ Antilles Guyane, Dept Math Informat, F-97159 Pointe A Pitre, Guadeloupe, France
关键词
nonexpansive mapping; fixed-point; monotone operator; Yosida approximate; iterative method; convex optimization; penalty method; monotone inclusion;
D O I
10.1006/jmaa.1999.6615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to propose viscosity approximation methods which amounts to selecting a particular fixed-point of a given nonexpansive self-mapping. (C) 2000 Academic Press.
引用
收藏
页码:46 / 55
页数:10
相关论文
共 11 条
[1]  
AHMED C, 1998, THESIS U MONTPELLIER
[2]  
ALBERT Y, 1995, PROBLEMS FIXED POINT
[3]  
[Anonymous], 1988, NUMERICAL METHODS SO
[4]   A dynamical approach to convex minimization coupling approximation with the steepest descent method [J].
Attouch, H ;
Cominetti, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 128 (02) :519-540
[5]   Viscosity solutions of minimization problems [J].
Attouch, H .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (03) :769-806
[6]   INFINITE PRODUCTS OF RESOLVENTS [J].
BREZIS, H ;
LIONS, PL .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 29 (04) :329-345
[7]  
BREZIS H, 1974, OPERATEURS MAXIMAUX
[8]   ASYMPTOTIC ANALYSIS OF THE EXPONENTIAL PENALTY TRAJECTORY IN LINEAR-PROGRAMMING [J].
COMINETTI, R ;
SANMARTIN, J .
MATHEMATICAL PROGRAMMING, 1994, 67 (02) :169-187
[9]  
Lions P. L., 1978, Nonlinear Analysis Theory, Methods & Applications, V2, P553, DOI 10.1016/0362-546X(78)90003-2
[10]  
Moreau J.-J, 1971, SEM AN CONV MONTP