On Hamel bases in Banach spaces

被引:1
|
作者
Carlos Ferrando, Juan [1 ]
机构
[1] Univ Miguel Hernandez, Ctr Invest Operat, E-03202 Elche, Alicante, Spain
关键词
Hamel basis; Banach space; K-analytic space; countably K-determined space; barrelled space;
D O I
10.4064/sm220-2-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that no infinite-dimensional Banach space can have a weakly K-analytic Hamel basis. As consequences, (i) no infinite-dimensional weakly analytic separable Banach space E has a Hamel basis C-embedded in E(weak), and (ii) no infinite-dimensional Banach space has a weakly pseudocompact Hamel basis. Among other results, it is also shown that there exist noncomplete normed barrelled spaces with closed discrete Hamel bases of arbitrarily large cardinality.
引用
收藏
页码:169 / 178
页数:10
相关论文
共 50 条
  • [31] BANACH SPACES FOR THE SCHWARTZ DISTRIBUTIONS
    Gill, Tepper L.
    REAL ANALYSIS EXCHANGE, 2018, 43 (01) : 1 - 36
  • [32] Flat Forms in Banach Spaces
    Marie A. Snipes
    Journal of Geometric Analysis, 2013, 23 : 490 - 538
  • [33] Holomorphic functions on Banach spaces
    Mujica, Jorge
    NOTE DI MATEMATICA, 2006, 25 (02): : 113 - 138
  • [34] The trace formula in Banach spaces
    W. B. Johnson
    A. Szankowski
    Israel Journal of Mathematics, 2014, 203 : 389 - 404
  • [35] Banach spaces with the PC property
    Rybakov, VI
    MATHEMATICAL NOTES, 2004, 76 (3-4) : 525 - 533
  • [36] Discrete chaos in Banach spaces
    Yuming Shi
    Guanrong Chen
    Science in China Series A: Mathematics, 2005, 48 : 222 - 238
  • [37] Greedy algorithms in Banach spaces
    V.N. Temlyakov
    Advances in Computational Mathematics, 2001, 14 : 277 - 292
  • [38] On asymptotic models in Banach spaces
    Halbeisen, L
    Odell, E
    ISRAEL JOURNAL OF MATHEMATICS, 2004, 139 (1) : 253 - 291
  • [39] Flat Forms in Banach Spaces
    Snipes, Marie A.
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) : 490 - 538
  • [40] The Steiner Subratio in Banach Spaces
    Burusheva, L. Sh.
    MATHEMATICAL NOTES, 2019, 106 (1-2) : 183 - 190