On Hamel bases in Banach spaces

被引:1
|
作者
Carlos Ferrando, Juan [1 ]
机构
[1] Univ Miguel Hernandez, Ctr Invest Operat, E-03202 Elche, Alicante, Spain
关键词
Hamel basis; Banach space; K-analytic space; countably K-determined space; barrelled space;
D O I
10.4064/sm220-2-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that no infinite-dimensional Banach space can have a weakly K-analytic Hamel basis. As consequences, (i) no infinite-dimensional weakly analytic separable Banach space E has a Hamel basis C-embedded in E(weak), and (ii) no infinite-dimensional Banach space has a weakly pseudocompact Hamel basis. Among other results, it is also shown that there exist noncomplete normed barrelled spaces with closed discrete Hamel bases of arbitrarily large cardinality.
引用
收藏
页码:169 / 178
页数:10
相关论文
共 50 条
  • [21] On automorphic Banach spaces
    Yolanda Moreno
    Anatolij Plichko
    Israel Journal of Mathematics, 2009, 169
  • [22] Superprojective Banach spaces
    Gonzalez, Manuel
    Pello, Javier
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 437 (02) : 1140 - 1151
  • [23] Banach Lattice Structures and Concavifications in Banach Spaces
    Agud, Lucia
    Calabuig, Jose Manuel
    Juan, Maria Aranzazu
    Sanchez Perez, Enrique A.
    MATHEMATICS, 2020, 8 (01)
  • [24] An estimate of the Banach-Mazur distances between Hilbert spaces and Banach spaces
    Sánchez Pérez E.A.
    Del Campo Cañizares S.
    Rendiconti del Circolo Matematico di Palermo, 1997, 46 (3) : 465 - 476
  • [25] EXPECTATION IN METRIC SPACES AND CHARACTERIZATIONS OF BANACH SPACES
    Bator, Artur
    Zieba, Wieslaw
    DEMONSTRATIO MATHEMATICA, 2009, 42 (04) : 901 - 908
  • [26] Weighted Bloch spaces which are Banach spaces
    Nakazi T.
    Rendiconti del Circolo Matematico di Palermo, 2013, 62 (3) : 427 - 440
  • [27] Some approximation properties of Banach spaces and Banach lattices
    Tadeusz Figiel
    William B. Johnson
    Aleksander Pełczyński
    Israel Journal of Mathematics, 2011, 183
  • [28] A Banach–Zarecki Theorem for functions with values in Banach spaces
    Sokol Bush Kaliaj
    Monatshefte für Mathematik, 2014, 175 : 555 - 564
  • [29] Kergin approximation in Banach spaces
    Simon, Scott
    JOURNAL OF APPROXIMATION THEORY, 2008, 154 (02) : 181 - 186
  • [30] Nonlinear expansions in Banach spaces
    Nasri, M.
    SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2024, 22 (01):