Fabrication of conductive elastic nanocomposites via framing intact interconnected graphene networks

被引:75
作者
Luo, Yongyue [1 ]
Zhao, Pengfei [1 ]
Yang, Qi [2 ]
He, Dongning [1 ]
Kong, Lingxue [3 ]
Peng, Zheng [1 ,3 ]
机构
[1] Chinese Acad Trop Agr Sci, Agr Prod Proc Res Inst, Chinese Agr Minist, Key Lab Trop Crop Prod Proc, Zhanjiang 524001, Peoples R China
[2] Sichuan Univ, State Key Lab Polymer Mat Engn, Coll Polymer Sci & Engn, Chengdu 610065, Peoples R China
[3] Deakin Univ, Inst Frontier Mat, Geelong, Vic 3216, Australia
关键词
Flexible composites; Functional composites; Electrical properties; Transmission electron microscopy (TEM); Graphene; MULTIWALLED CARBON NANOTUBES; ELECTRICAL-CONDUCTIVITY; POLYMER NANOCOMPOSITES; RUBBER NANOCOMPOSITES; NATURAL-RUBBER; COMPOSITES; PERCOLATION; MICROSTRUCTURE; PERFORMANCE; BLACK;
D O I
10.1016/j.compscitech.2014.05.037
中图分类号
TB33 [复合材料];
学科分类号
摘要
Electrically conductive elastic nanocomposites with well-organized graphene architectures offer significant improvement in various properties. However, achieving desirable graphene architectures in crosslinked rubber is challenging due to high viscosity and cross-linked nature of rubber matrices. Here, three dimensional (3D) interconnected graphene networks in natural rubber (NR) matrix are framed with self-assembly integrating latex compounding technology by employing electrostatic adsorption between poly(diallyldimethylammonium chloride) modified graphene (positively charged) and NR latex particles (negatively charged) as the driving force. The 3D graphene structure endows the resulted nanocomposites with excellent electrical conductivity of 7.31 S/m with a graphene content of 4.16 vol.%, extremely low percolation threshold of 0.21 vol.% and also analogous reinforcement in mechanical properties. The developed strategy will provide a practical approach for developing elastic nanocomposites with multi-functional properties. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:143 / 151
页数:9
相关论文
共 51 条
[1]   Mechanically Durable and Highly Conductive Elastomeric Composites from Long Single-Walled Carbon Nanotubes Mimicking the Chain Structure of Polymers [J].
Ata, Seisuke ;
Kobashi, Kazufumi ;
Yumura, Motoo ;
Hata, Kenji .
NANO LETTERS, 2012, 12 (06) :2710-2716
[2]   HYDRIDE EMBRITTLEMENT IN ZIRCALOY-4 PLATE .1. INFLUENCE OF MICROSTRUCTURE ON THE HYDRIDE EMBRITTLEMENT IN ZIRCALOY-4 AT 20-DEGREES-C AND 350-DEGREES-C [J].
BAI, JB ;
PRIOUL, C ;
FRANCOIS, D .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1994, 25 (06) :1185-1197
[3]   Reinforcement of hydrogenated carboxylated nitrile-butadiene rubber with exfoliated graphene oxide [J].
Bai, Xin ;
Wan, Chaoying ;
Zhang, Yong ;
Zhai, Yinghao .
CARBON, 2011, 49 (05) :1608-1613
[4]   Improving reinforcement of natural rubber by networking of activated carbon nanotubes [J].
Bhattacharyya, Sanjib ;
Sinturel, Christophe ;
Bahloul, Ouziyine ;
Saboungi, Marie-Louise ;
Thomas, Sabu ;
Salvetat, Jean-Paul .
CARBON, 2008, 46 (07) :1037-1045
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[7]   Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: A comparative study [J].
Das, Amit ;
Kasaliwal, Gaurav R. ;
Jurk, Rene ;
Boldt, Regine ;
Fischer, Dieter ;
Stoeckelhuber, Klaus Werner ;
Heinrich, Gert .
COMPOSITES SCIENCE AND TECHNOLOGY, 2012, 72 (16) :1961-1967
[8]   Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity [J].
Du, FM ;
Scogna, RC ;
Zhou, W ;
Brand, S ;
Fischer, JE ;
Winey, KI .
MACROMOLECULES, 2004, 37 (24) :9048-9055
[9]   Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber [J].
Fakhru'l-Razi, A. ;
Atieh, M. A. ;
Girun, N. ;
Chuah, T. G. ;
El-Sadig, M. ;
Biak, D. R. A. .
COMPOSITE STRUCTURES, 2006, 75 (1-4) :496-500
[10]   Intrinsic conductivity of objects having arbitrary shape and conductivity [J].
Garboczi, EJ ;
Douglas, JF .
PHYSICAL REVIEW E, 1996, 53 (06) :6169-6180