Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys

被引:119
作者
An, X. H. [1 ]
Wu, S. D. [1 ]
Wang, Z. G. [1 ]
Zhang, Z. F. [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
Ultrafine-grained Cu; Nanocrystalline Cu-Al alloys; Stacking fault energy; Cyclic softening; Fatigue damage mechanism; STACKING-FAULT ENERGY; CRACK GROWTH RESISTANCE; STRESS-STRAIN RESPONSE; FATIGUE BEHAVIOR; METALS; COPPER; MICROSTRUCTURE; BOUNDARIES; STABILITY; LIFE;
D O I
10.1016/j.actamat.2014.04.053
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cyclic deformation responses of ultrafine-grained (UFG) Cu and nanocrystalline (NC) Cu Al alloys produced by equal channel angular pressing were investigated systematically by applying low-cycle fatigue (LCF) and high-cycle fatigue (HCF) tests. Based on the dependence of the fatigue life (N-f) on the total strain amplitude (Delta epsilon(t)/2) and stress amplitude (Delta sigma/2) in comparison with that of UFG Cu, the LCF life and HCF strength, especially fatigue endurance limits, of NC Cu Al alloys, were enhanced strikingly at the same time as their stacking fault energies (SFE) decreased. These upgraded fatigue performances with lowering of the SFE in NC Cu Al alloys can be attributed not only to the simultaneous increase in their monotonic strength and ductility on the macroscale, but also to the crucially decreased cyclic softening behavior on the microscale. It was found that substantial grain growth and large-scale shear bands, both of which are essential ingredients, resulting in significant cyclic softening and then deterioration in the LCF life of UFG and NC materials, were reduced advantageously on decreasing the SFE in NC Cu-Al alloys. Moreover, the dominant fatigue damage micro-mechanism was also transformed inherently from extensive grain boundary (GB) migration in UFG Cu to other local GB activities such as atom shuffling or GB sliding/rotation in NC Cu Al alloy with low SFE. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:200 / 214
页数:15
相关论文
共 72 条
  • [1] Cyclic softening of ultrafine grain copper
    Agnew, SR
    Weertman, JR
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1998, 244 (02): : 145 - 153
  • [2] Overview of fatigue performance of Cu processed by severe plastic deformation
    Agnew, SR
    Vinogradov, AY
    Hashimoto, S
    Weertman, JR
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 1999, 28 (09) : 1038 - 1044
  • [3] Mechanically driven annealing twinning induced by cyclic deformation in nanocrystalline Cu
    An, X. H.
    Lin, Q. Y.
    Wu, S. D.
    Zhang, Z. F.
    [J]. SCRIPTA MATERIALIA, 2013, 68 (12) : 988 - 991
  • [4] Enhanced strength-ductility synergy in nanostructured Cu and Cu-Al alloys processed by high-pressure torsion and subsequent annealing
    An, X. H.
    Wu, S. D.
    Zhang, Z. F.
    Figueiredo, R. B.
    Gao, N.
    Langdon, T. G.
    [J]. SCRIPTA MATERIALIA, 2012, 66 (05) : 227 - 230
  • [5] Significance of stacking fault energy on microstructural evolution in Cu and Cu-Al alloys processed by high-pressure torsion
    An, X. H.
    Lin, Q. Y.
    Wu, S. D.
    Zhang, Z. F.
    Figueiredo, R. B.
    Gao, N.
    Langdon, T. G.
    [J]. PHILOSOPHICAL MAGAZINE, 2011, 91 (25) : 3307 - 3326
  • [6] Influence of Stacking Fault Energy on the Microstructures and Grain Refinement in the Cu-Al Alloys during Equal-Channel Angular Pressing
    An, X. H.
    Wu, S. D.
    Zhang, Z. F.
    [J]. NANOMATERIALS BY SEVERE PLASTIC DEFORMATION: NANOSPD5, PTS 1 AND 2, 2011, 667-669 : 379 - 384
  • [7] Formation of fivefold deformation twins in an ultrafine-grained copper alloy processed by high-pressure torsion
    An, X. H.
    Lin, Q. Y.
    Wu, S. D.
    Zhang, Z. F.
    Figueiredo, R. B.
    Gao, N.
    Langdon, T. G.
    [J]. SCRIPTA MATERIALIA, 2011, 64 (03) : 249 - 252
  • [8] Microstructural evolution and shear fracture of Cu-16 at.% Al alloy induced by equal channel angular pressing
    An, X. H.
    Lin, Q. Y.
    Wu, S. D.
    Zhang, Z. F.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (16-17): : 4510 - 4514
  • [9] High strength and utilizable ductility of bulk ultrafine-grained Cu-Al alloys
    An, X. H.
    Han, W. Z.
    Huang, C. X.
    Zhang, P.
    Yang, G.
    Wu, S. D.
    Zhang, Z. F.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (20)
  • [10] AN XH, UNPUB