A Rainbow k-Matching in the Complete Graph with r Colors

被引:0
作者
Fujita, Shinya [1 ]
Kaneko, Atsushi
Schiermeyer, Ingo [2 ]
Suzuki, Kazuhiro [3 ]
机构
[1] Gunma Natl Coll Technol, Dept Math, Gunma 3718530, Japan
[2] Tech Univ Bergakad Freiberg, Inst Diskrete Math & Algebra, D-09596 Freiberg, Germany
[3] Ibaraki Univ, Dept Comp & Informat Sci, Ibaraki 3168511, Japan
关键词
edge-coloring; matching; complete graph; anti-Ramsey; rainbow; heterochromatic; totally multicolored;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An r-edge-coloring of a graph is an assignment of r colors to the edges of the graph. An exactly r-edge-coloring of a graph is an r-edge-coloring of the graph that uses all r colors. A matching of an edge-colored graph is called rainbow matching, if no two edges have the same color in the matching. In this paper, we prove that an exactly r-edge-colored complete graph of order n has a rainbow matching of size k(>= 2) if r >= max{(2k-3 2) + 2, (k-2 2) + (k-2)(n-k + 2) +2}, k >= 2, and n >= 2k + 1. The bound on r is best possible.
引用
收藏
页数:13
相关论文
共 6 条
[1]  
Erdos P., 1975, Colloq. Math. Soc. Janos Bolya, V10, P633
[2]  
Erdos Paul, 1959, Acta Math. Acad. Sci. Hungar, V10, P337, DOI [10.1007/bf02024498, DOI 10.1007/BF02024498]
[3]  
Eroh L., 2004, Journal of Combinatorial Mathematics and Combinatorial Computing, V51, P175
[4]  
Eroh L., 2004, B I COMBIN APPL, V40, P91
[5]   An anti-Ramsey theorem [J].
Montellano-Ballesteros, JJ ;
Neumann-Lara, V .
COMBINATORICA, 2002, 22 (03) :445-449
[6]   Rainbow numbers for matchings and complete graphs [J].
Schiermeyer, I .
DISCRETE MATHEMATICS, 2004, 286 (1-2) :157-162