Augmented Lagrangian;
control for optimization;
global exponential stability;
method of multipliers;
non-smooth optimization;
primal-dual dynamics;
proximal algorithms;
proximal augmented Lagrangian;
regularization for design;
structured optimal control;
ALGORITHM;
DYNAMICS;
CONVERGENCE;
STABILITY;
D O I:
10.1109/TAC.2018.2867589
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
We study a class of optimization problems in which the objective function is given by the sum of a differentiable but possibly nonconvex component and a nondifferentiable convex regularization term. We introduce an auxiliary variable to separate the objective function components and utilize the Moreau envelope of the regularization term to derive the proximal augmented Lagrangian- a continuously differentiable function obtained by constraining the augmented Lagrangian to the manifold that corresponds to the explicit minimization over the variable in the nonsmooth term. The continuous differentiability of this function with respect to both primal and dual variables allows us to leverage the method of multipliers (MM) to compute optimal primal-dual pairs by solving a sequence of differentiable problems. The MM algorithm is applicable to a broader class of problems than proximal gradient methods and it has stronger convergence guarantees and a more refined step-size update rules than the alternating direction method of multipliers (ADMM). These features make it an attractive option for solving structured optimal control problems. We also develop an algorithm based on the primal-descent dual-ascent gradient method and prove global (exponential) asymptotic stability when the differentiable component of the objective function is (strongly) convex and the regularization term is convex. Finally, we identify classes of problems for which the primal-dual gradient flow dynamics are convenient for distributed implementation and compare/contrast our framework to the existing approaches.
机构:
Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
Doerfler, Florian
Jovanovic, Mihailo R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USAUniv Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
Jovanovic, Mihailo R.
Chertkov, Michael
论文数: 0引用数: 0
h-index: 0
机构:
LANL, Div Theory, Los Alamos, NM 87544 USA
LANL, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA
New Mexico Consortium, Los Alamos, NM 87544 USAUniv Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
Chertkov, Michael
Bullo, Francesco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USAUniv Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
机构:
Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
Doerfler, Florian
Jovanovic, Mihailo R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USAUniv Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
Jovanovic, Mihailo R.
Chertkov, Michael
论文数: 0引用数: 0
h-index: 0
机构:
LANL, Div Theory, Los Alamos, NM 87544 USA
LANL, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA
New Mexico Consortium, Los Alamos, NM 87544 USAUniv Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
Chertkov, Michael
Bullo, Francesco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USAUniv Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA