On submanifolds of highly negatively curved spaces

被引:1
作者
Bessa, G. Pacelli [1 ]
Pigola, Stefano [2 ]
Setti, Alberto G. [2 ]
机构
[1] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, CE, Brazil
[2] Univ Insubria Como, Sez Matemat DiSAT, I-22100 Como, Italy
关键词
Submanifolds; isoperimetric ratio; spectral and mean curvature estimates; ISOPERIMETRIC-INEQUALITIES; MEAN-CURVATURE; EXIT; TIME;
D O I
10.1142/S0129167X14500554
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove spectral, stochastic and mean curvature estimates for complete m-submanifolds phi : M -> N of n-manifolds with a pole N in terms of the comparison isoperimetric ratio I-m and the extrinsic radius r(phi) <= infinity. Our proof holds for the bounded case r(phi) <= infinity, recovering the known results, as well as for the unbounded case r(phi) = infinity. In both cases, the fundamental ingredient in these estimates is the integrability over ( 0, r(phi)) of the inverse I-m(-1) of the comparison isoperimetric radius. When r(phi) = infinity, this condition is guaranteed if N is highly negatively curved.
引用
收藏
页数:15
相关论文
共 17 条
[1]   The mean curvature of cylindrically bounded submanifolds [J].
Alias, Luis J. ;
Bessa, G. Pacelli ;
Dajczer, Marcos .
MATHEMATISCHE ANNALEN, 2009, 345 (02) :367-376
[2]  
Aminov J., 1973, MATH USSR SB, V21, P449
[3]  
BARTA J., 1937, CR HEBD ACAD SCI, V204, P472
[4]   An extension of Barta's Theorem and geometric applications [J].
Bessa, G. Pacelli ;
Montenegro, J. Fabio .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2007, 31 (04) :345-362
[5]   Spectral and stochastic properties of the f-Laplacian, solutions of PDEs at infinity and geometric applications [J].
Bessa, G. Pacelli ;
Pigola, Stefano ;
Setti, Alberto .
REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (02) :579-610
[6]   The Spectrum of the Martin-Morales-Nadirashvili Minimal Surfaces Is Discrete [J].
Bessa, G. Pacelli ;
Jorge, Luquesio P. ;
Montenegro, J. Fabio .
JOURNAL OF GEOMETRIC ANALYSIS, 2010, 20 (01) :63-71
[7]   Mean time exit and isoperimetric inequalities for minimal submanifolds of Nx [J].
Bessa, G. Pacelli ;
Montenegro, J. Fabio .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 :242-252
[8]   Eigenvalue estimates for submanifolds with locally bounded mean curvature [J].
Bessa, GP ;
Montenegro, JF .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 24 (03) :279-290
[9]  
Bianchini B., 2013, MEMOIRS AM MATH SOC, V225
[10]   Eigenvalue estimates for submanifolds with bounded mean curvature in the hyperbolic space [J].
Cheung, LF ;
Leung, PF .
MATHEMATISCHE ZEITSCHRIFT, 2001, 236 (03) :525-530