Efficient wavelet construction with Catmull-Clark subdivision

被引:23
作者
Wang, Huawei [1 ]
Qin, Kaihuai
Tang, Kai
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
[3] Shenyang Inst Aeronaut Engn, Shenyang 110034, Liaoning, Peoples R China
关键词
biorthogonal wavelet; Catmull-Clark subdivision; lifting scheme;
D O I
10.1007/s00371-006-0074-7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents an efficient biorthogonal wavelet construction with the generalized Catmull-Clark subdivision based on the lifting scheme. The subdivision wavelet construction scheme is applicable to all variants of Catmull-Clark subdivision, so it is more universal than the previous wavelet construction for the generalized bicubic B-spline subdivision. Because the analysis and synthesis algorithms of the wavelets are composed of a series of local and in-place lifting operations, they can be performed in linear time. The experiments have demonstrated the stability of the proposed wavelet analysis based on the ordinary Catmull-Clark subdivision. Moreover, the resulting Catmull-Clark subdivision wavelets have better fitting quality than the generalized bicubic B-spline subdivision wavelets at a similar computation cost.
引用
收藏
页码:874 / 884
页数:11
相关论文
共 34 条
[1]   A subdivision scheme for hexahedral meshes [J].
Bajaj, C ;
Schaefer, S ;
Warren, J ;
Xu, GL .
VISUAL COMPUTER, 2002, 18 (5-6) :343-356
[2]   A MATRIX APPROACH TO THE ANALYSIS OF RECURSIVELY GENERATED B-SPLINE SURFACES [J].
BALL, AA ;
STORRY, DJT .
COMPUTER-AIDED DESIGN, 1986, 18 (08) :437-442
[3]   Biorthogonal loop-subdivision wavelets [J].
Bertram, M .
COMPUTING, 2004, 72 (1-2) :29-39
[4]   Generalized B-spline subdivision-surface wavelets for geometry compression [J].
Bertram, M ;
Duchaineau, MA ;
Hamann, B ;
Joy, KI .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2004, 10 (03) :326-338
[5]   Bicubic subdivision-surface wavelets for large-scale isosurface representation and visualization [J].
Bertram, M ;
Duchaineau, MA ;
Hamann, B ;
Joy, KI .
VISUALIZATION 2000, PROCEEDINGS, 2000, :389-396
[6]   Multiresolution analysis on irregular surface meshes [J].
Bonneau, GP .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 1998, 4 (04) :365-378
[7]   RECURSIVELY GENERATED B-SPLINE SURFACES ON ARBITRARY TOPOLOGICAL MESHES [J].
CATMULL, E ;
CLARK, J .
COMPUTER-AIDED DESIGN, 1978, 10 (06) :350-355
[8]   BEHAVIOR OF RECURSIVE DIVISION SURFACES NEAR EXTRAORDINARY POINTS [J].
DOO, D ;
SABIN, M .
COMPUTER-AIDED DESIGN, 1978, 10 (06) :356-360
[9]   A BUTTERFLY SUBDIVISION SCHEME FOR SURFACE INTERPOLATION WITH TENSION CONTROL [J].
DYN, N ;
LEVIN, D ;
GREGORY, JA .
ACM TRANSACTIONS ON GRAPHICS, 1990, 9 (02) :160-169
[10]  
Eck M., 1995, P 22 ANN C COMPUTER, P173, DOI DOI 10.1145/218380.218440