Cramer-Rao bound for time-continuous measurements in linear Gaussian quantum systems

被引:21
|
作者
Genoni, Marco G. [1 ]
机构
[1] Univ Milan, Dipartimento Fis, Quantum Technol Lab, I-20133 Milan, Italy
关键词
FISHER INFORMATION MATRIX; ENHANCED METROLOGY; MODELS; INVARIANCE; LIMIT;
D O I
10.1103/PhysRevA.95.012116
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe a compact and reliablemethod to calculate the Fisher information for the estimation of a dynamical parameter in a continuously measured linear Gaussian quantum system. Unlike previous methods in the literature, which involve the numerical integration of a stochastic master equation for the corresponding density operator in a Hilbert space of infinite dimension, the formulas here derived depend only on the evolution of first and second moments of the quantum states and thus can be easily evaluated without the need of any approximation. We also present some basic but physically meaningful examples where this result is exploited, calculating analytical and numerical bounds on the estimation of the squeezing parameter for a quantum parametric amplifier and of a constant force acting on a mechanical oscillator in a standard optomechanical scenario.
引用
收藏
页数:8
相关论文
empty
未找到相关数据