Gears, pregears and related domains

被引:2
|
作者
Brown, Philip R. [1 ]
Porter, R. Michael [2 ]
机构
[1] Texas A&M Univ, Dept Gen Acad, Galveston, TX 77553 USA
[2] CINVESTAV IPN, Dept Matemat, Santiago De Queretaro 76000, Mexico
关键词
conformal mapping; accessory parameter; Schwarzian derivative; gearlike domain; conformal modulus; topological quadrilateral; Primary: 30C30; Secondary: 30C20; 33E05; CIRCULAR QUADRILATERALS; GEARLIKE DOMAINS;
D O I
10.1080/17476933.2015.1057715
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study conformal mappings from the unit disc to one-toothed gear-shaped planar domains from the point of view of the Schwarzian derivative. Gear-shaped (or gearlike) domains fit into a more general category of domains we call pregears (images of gears under Mobius transformations), which aid in the study of the conformal mappings for gears and which we also describe in detail. Such domains being bounded by arcs of circles, the Schwarzian derivative of the Riemann mapping is known to be a rational function of a specific form. One accessory parameter of these mappings is naturally related to the conformal modulus of the gear (or pregear) and we prove several qualitative results relating it to the principal remaining accessory parameter. The corresponding region of univalence (parameters for which the rational function is the Schwarzian derivative of a conformal mapping) is determined precisely.
引用
收藏
页码:89 / 103
页数:15
相关论文
共 50 条
  • [1] Numerical Conformal Mapping to One-Tooth Gear-Shaped Domains and Applications
    Brown, Philip R.
    Porter, R. Michael
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2016, 16 (02) : 319 - 345
  • [2] Numerical Conformal Mapping to One-Tooth Gear-Shaped Domains and Applications
    Philip R. Brown
    R. Michael Porter
    Computational Methods and Function Theory, 2016, 16 : 319 - 345
  • [3] Szegö Coordinates, Quadrature Domains, and Double Quadrature Domains
    Steven R. Bell
    Björn Gustafsson
    Zachary A. Sylvan
    Computational Methods and Function Theory, 2011, 11 : 25 - 44
  • [4] Szego Coordinates, Quadrature Domains, and Double Quadrature Domains
    Bell, Steven R.
    Gustafsson, Bjorn
    Sylvan, Zachary A.
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2011, 11 (01) : 25 - 44
  • [5] Quasiconformal Mappings from Uniform Domains onto John Domains
    Huang, Manzi
    Ponnusamy, Saminathan
    Rasila, Antti
    Wang, Xiantao
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2024,
  • [6] Conformal Mapping of Circular Multiply Connected Domains Onto Domains with Slits
    Czapla, Roman
    Mityushev, Vladimir V.
    NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 19 - 25
  • [7] ON CONFORMAL MAPS FROM MULTIPLY CONNECTED DOMAINS ONTO LEMNISCATIC DOMAINS
    Sete, Olivier
    Liesen, Jorg
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2016, 45 : 1 - 15
  • [8] One Parameter Families of Conformal Mappings of Bounded Doubly Connected Polygonal Domains
    Dyutin, A.
    Nasyrov, S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (01) : 390 - 411
  • [9] Computing Conformal Maps of Finitely Connected Domains onto Canonical Slit Domains
    Valentin V. Andreev
    Timothy H. McNicholl
    Theory of Computing Systems, 2012, 50 : 354 - 369
  • [10] Computing Conformal Maps of Finitely Connected Domains onto Canonical Slit Domains
    Andreev, Valentin V.
    McNicholl, Timothy H.
    THEORY OF COMPUTING SYSTEMS, 2012, 50 (02) : 354 - 369