Routes to increase the conversion and the energy efficiency in the splitting of CO2 by a dielectric barrier discharge

被引:82
|
作者
Ozkan, A. [1 ,2 ]
Bogaerts, A. [2 ]
Reniers, F. [1 ]
机构
[1] Univ Libre Bruxelles, Chim Analyt & Chim Interfaces CHANI, Campus Plaine,CP255,Blvd Triomphe, B-1050 Brussels, Belgium
[2] Univ Antwerp, Res Grp PLASMANT, Univ Pl 1, B-2610 Antwerp, Belgium
关键词
CO2; conversion; dielectric-barrier discharge; atmospheric plasma; discharge properties; dielectric; temperature; CARBON-DIOXIDE; PLASMA; EXCITATION; METHANE;
D O I
10.1088/1361-6463/aa562c
中图分类号
O59 [应用物理学];
学科分类号
摘要
Here, we present routes to increase CO2 conversion into CO using an atmospheric pressure dielectric-barrier discharge. The change in conversion as a function of simple plasma parameters, such as power, flow rate, but also frequency, on-and-off power pulse, thickness and the chemical nature of the dielectric, wall and gas temperature, are described. By means of an in-depth electrical characterization of the discharge (effective plasma voltage, dielectric voltage, plasma current, number and lifetime of the microdischarges), combined with infrared analysis of the walls of the reactor, optical emission spectroscopy for the gas temperature, and mass spectrometry for the CO2 conversion, we propose a global interpretation of the effect of all the experimental parameters on the conversion and efficiency of the reaction.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Dielectric Barrier Discharge Plasma Combined with Ce-Ni Mesoporous catalysts for CO2 splitting to CO
    Golubev, Oleg V.
    Maximov, Anton L.
    PLASMA CHEMISTRY AND PLASMA PROCESSING, 2024, 44 (06) : 2087 - 2100
  • [22] How do the barrier thickness and dielectric material influence the filamentary mode and CO2 conversion in a flowing DBD?
    Ozkan, A.
    Dufour, T.
    Bogaerts, A.
    Reniers, F.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (04)
  • [23] Influence of dielectric barrier materials to the behavior of dielectric barrier discharge plasma for CO2 decomposition
    Li, RX
    Yamaguchi, Y
    Shu, Y
    Qing, T
    Sato, T
    SOLID STATE IONICS, 2004, 172 (1-4) : 235 - 238
  • [24] CO2-CH4 conversion and syngas formation at atmospheric pressure using a multi-electrode dielectric barrier discharge
    Ozkan, A.
    Dufour, T.
    Arnoult, G.
    De Keyzer, P.
    Bogaerts, A.
    Reniers, F.
    JOURNAL OF CO2 UTILIZATION, 2015, 9 : 74 - 81
  • [25] AC-driven atmospheric pressure glow discharge co-improves conversion and energy efficiency of CO2 splitting
    Meng, Guodong
    Xia, Linghan
    Cheng, Yonghong
    Yin, Zongyou
    JOURNAL OF CO2 UTILIZATION, 2023, 70
  • [26] Dielectric Barrier Discharge Plasma-Assisted Catalytic CO2 Hydrogenation: Synergy of Catalyst and Plasma
    Gao, Xingyuan
    Liang, Jinglong
    Wu, Liqing
    Wu, Lixia
    Kawi, Sibudjing
    CATALYSTS, 2022, 12 (01)
  • [27] Sustainability Assessment of the Utilization of CO2 in a Dielectric Barrier Discharge Reactor Powered by Photovoltaic Energy
    Pou, Josep O.
    Estopanan, Eduard
    Fernandez-Garcia, Javier
    Gonzalez-Olmos, Rafael
    PROCESSES, 2022, 10 (09)
  • [28] Effect of Dielectric Barrier Materials on Conversion Characteristics of Low Pressure CO2 Dielectric Barrier Discharge
    Fu, Qiang
    Ye, Zifan
    Wang, Yufei
    Chang, Zhengshi
    Shiyou Xuebao, Shiyou Jiagong/Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39 (05): : 1003 - 1012
  • [29] Mechanism of plasma chemistry in CO2 hydrogenation using a dielectric barrier discharge reactor
    Zhang, Xuming
    Shan, Yun
    Sun, Zhi
    Pan, Hua
    Zhang, Liancheng
    Zhu, Zuchao
    Feng, Fada
    Han, Jingyi
    Li, Kai
    PLASMA PROCESSES AND POLYMERS, 2024, 21 (07)
  • [30] Pinpointing energy losses in CO2 plasmas - Effect on CO2 conversion
    Berthelot, Antonin
    Bogaerts, Annemie
    JOURNAL OF CO2 UTILIZATION, 2018, 24 : 479 - 499