Robust Principal Component Analysis for Brain Imaging

被引:0
|
作者
Georgieva, Petia [1 ]
De la Torre, Fernando [2 ]
机构
[1] Univ Aveiro, P-3800 Aveiro, Portugal
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2013 | 2013年 / 8131卷
关键词
brain imaging; robust principal component analysis; functional Magnetic Resonance Imaging;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Discrimination of cognitive states from functional Magnetic Resonance Images (fMRI) is a challenging task, particularly when across subjects common representation of brain states is to be detected. Among several difficulties, the huge number of features (voxels) is a major obstacle for reliable discrimination of common patterns across brains. Principal Component Analysis (PCA) is widely applied for learning of low dimensional linear data models in image processing. The main drawback of the traditional PCA is that it is a least-square technique that fails to account for outliers. Previous attempts to make PCA robust have treated the entire image as an outlier. However, the fMRIs may contain undesirable artifacts due to errors related with the brain scanning process, alignment errors or pixels that are corrupted by noise. In this paper we propose a new dimensionality reduction approach based on Robust Principal Component Analysis (RPCA) that uses an intra-sample outlier process to account for pixel outliers. The RPCA improves classification accuracy of two cognitive brain states across various subjects compared to using conventional PCA or not performing dimensionality reduction.
引用
收藏
页码:288 / 295
页数:8
相关论文
共 50 条
  • [1] Robust Principal Component Analysis for Improving Cognitive Brain States Discrimination from fMRI
    Georgieva, Petia
    Nuntal, Nuttapod
    De la Torre, Fernando
    PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2013, 2013, 7887 : 165 - 172
  • [2] Multilinear robust principal component analysis
    Shi, Jia-Rong
    Zhou, Shui-Sheng
    Zheng, Xiu-Yun
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (08): : 1480 - 1486
  • [3] Double robust principal component analysis
    Wang Q.
    Gao Q.
    Sun G.
    Ding C.
    Neurocomputing, 2022, 391 : 119 - 128
  • [4] Adaptive Weighted Robust Principal Component Analysis
    Xu, Zhengqin
    Lu, Yang
    Wu, Jiaxing
    He, Rui
    Wu, Shiqian
    Xie, Shoulie
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 19 - 24
  • [5] BAYESIAN LEARNING FOR ROBUST PRINCIPAL COMPONENT ANALYSIS
    Sundin, Martin
    Chatterjee, Saikat
    Jansson, Magnus
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 2361 - 2365
  • [6] Robust principal component analysis for compositional tables
    de Sousa, J.
    Hron, K.
    Facevicova, K.
    Filzmoser, P.
    JOURNAL OF APPLIED STATISTICS, 2021, 48 (02) : 214 - 233
  • [7] Bayesian robust principal component analysis with structured sparse component
    Han, Ningning
    Song, Yumeng
    Song, Zhanjie
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 109 : 144 - 158
  • [8] Multi-targets ISAR Imaging Technology based on Robust Principal Component Analysis
    Ye, Fan
    Wang, Zelong
    Zhu, Jubo
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON ELECTRONIC INDUSTRY AND AUTOMATION (EIA 2017), 2017, 145 : 168 - 171
  • [9] GPR Anomaly Detection with Robust Principal Component Analysis
    Masarik, Matthew P.
    Burns, Joseph
    Thelen, Brian T.
    Kelly, Jack
    Havens, Timothy C.
    DETECTION AND SENSING OF MINES, EXPLOSIVE OBJECTS, AND OBSCURED TARGETS XX, 2015, 9454
  • [10] Robust principal component analysis using facial reduction
    Ma, Shiqian
    Wang, Fei
    Wei, Linchuan
    Wolkowicz, Henry
    OPTIMIZATION AND ENGINEERING, 2020, 21 (03) : 1195 - 1219