Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations

被引:52
作者
Zhao, Yanmin [1 ,2 ]
Zhang, Yadong [1 ]
Liu, F. [2 ]
Turner, I. [2 ]
Tang, Yifa [3 ]
Anh, V. [2 ]
机构
[1] Xuchang Univ, Sch Math & Stat, Xuchang 461000, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia
[3] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-term time-fractional diffusion equation; Finite element method; L1; approximation; Stability Convergence and superconvergence; FINITE-ELEMENT-METHOD; DIFFERENCE SCHEME; ORDER; APPROXIMATION;
D O I
10.1016/j.camwa.2016.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using finite element method in spatial direction and classical L1 approximation in temporal direction, a fully-discrete scheme is established for a class of two-dimensional multi-term time fractional diffusion equations with Caputo fractional derivatives. The stability analysis of the approximate scheme is proposed. The spatial global superconvergence and temporal convergence of order O(h(2) + tau(2-alpha)) for the original variable in H-1-norm is presented by means of properties of bilinear element and interpolation postprocessing technique, where h and tau are the step sizes in space and time, respectively. Finally, several numerical examples are implemented to evaluate the efficiency of the theoretical results. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1087 / 1099
页数:13
相关论文
共 49 条
  • [21] The Galerkin finite element method for a multi-term time-fractional diffusion equation
    Jin, Bangti
    Lazarov, Raytcho
    Liu, Yikan
    Zhou, Zhi
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 825 - 843
  • [22] Fractional Pearson diffusions
    Leonenko, Nikolai N.
    Meerschaert, Mark M.
    Sikorskii, Alla
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 403 (02) : 532 - 546
  • [23] CONVERGENCE AND SUPERCONVERGENCE ANALYSIS OF LAGRANGE RECTANGULAR ELEMENTS WITH ANY ORDER ON ARBITRARY RECTANGULAR MESHES
    Li, Mingxia
    Guan, Xiaofei
    Mao, Shipeng
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2014, 32 (02) : 169 - 182
  • [24] Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients
    Li, Zhiyuan
    Liu, Yikan
    Yamamoto, Masahiro
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 381 - 397
  • [25] Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation
    Lin, Q
    Tobiska, L
    Zhou, A
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (01) : 160 - 181
  • [26] LIN Q, 2006, FINTE ELEMENT METHOD
  • [27] Lin Q., 1996, Construction and Analysis of High Efficient Finite Elements
  • [28] A SUPERCONVERGENCE RESULT FOR MIXED FINITE ELEMENT APPROXIMATIONS OF THE EIGENVALUE PROBLEM
    Lin, Qun
    Xie, Hehu
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (04): : 797 - 812
  • [29] Numerical solution of the space fractional Fokker-Planck equation
    Liu, F
    Anh, V
    Turner, I
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 166 (01) : 209 - 219
  • [30] Liu F., 2015, Numerical methods of fractional partial differential equations and applications