Variations of hodge structures of rank three k-Higgs bundles and moduli spaces of holomorphic triples

被引:1
作者
Zuniga-Rojas, Ronald A. [1 ]
机构
[1] Univ Costa Rica, Ctr Invest Matemat & Metamatemat CIMM, Escuela Matemat, San Jose 11501, Costa Rica
关键词
Higgs bundles; Holomorphic triples; Moduli spaces; Variations of Hodge structure; COHOMOLOGY RING; VECTOR-BUNDLES; POLYNOMIALS; CHARACTER;
D O I
10.1007/s10711-020-00572-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There is an isomorphism between the moduli spaces of sigma-stable holomorphic triples and some of the critical submanifolds of the moduli space of k-Higgs bundles of rank three, whose elements ( E, phi(k)) correspond to variations of Hodge structure, VHS. There are special embeddings on the moduli spaces of k-Higgs bundles of rank three. The main objective here is to study the cohomology of the critical submanifolds of such moduli spaces, extending those embeddings to moduli spaces of holomorphic triples.
引用
收藏
页码:137 / 172
页数:36
相关论文
共 28 条
[1]  
Arbarello E., 1985, GEOMETRY ALGEBRAIC C
[2]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[3]  
Bento S, 2010, THESIS
[4]   Moduli spaces of holomorphic triples over compact Riemann surfaces [J].
Bradlow, SB ;
García-Prada, O ;
Gothen, PB .
MATHEMATISCHE ANNALEN, 2004, 328 (1-2) :299-351
[5]   Homotopy groups of moduli spaces of representations [J].
Bradlow, Steven B. ;
Garcia-Prada, Oscar ;
Gothen, Peter B. .
TOPOLOGY, 2008, 47 (04) :203-224
[6]   Topology of Hitchin systems and Hodge theory of character varieties: the case A1 [J].
de Cataldo, Mark Andrea A. ;
Hausel, Tamas ;
Migliorini, Luca .
ANNALS OF MATHEMATICS, 2012, 175 (03) :1329-1407
[7]   POINCARE POLYNOMIALS OF VARIETY OF STABLE BUNDLES [J].
DESALE, UV ;
RAMANAN, S .
MATHEMATISCHE ANNALEN, 1975, 216 (03) :233-244
[8]   The Hodge numbers of the moduli spaces of vector bundles over a Riemann surface [J].
Earl, R ;
Kirwan, F .
QUARTERLY JOURNAL OF MATHEMATICS, 2000, 51 :465-483
[9]  
Farkas G., 2013, ADV LECT MATH, V25, P29
[10]   FIXED POINTS AND TORSION ON KAHLER MANIFOLDS [J].
FRANKEL, T .
ANNALS OF MATHEMATICS, 1959, 70 (01) :1-8