Defective Graphene Foam: A Platinum Catalyst Support for PEMFCs

被引:39
作者
Liu, Jianfeng [1 ]
Takeshi, Daio [1 ,2 ]
Sasaki, Kazunari [1 ,2 ,3 ,4 ]
Lyth, Stephen Matthew [3 ]
机构
[1] Kyushu Univ, Fac Engn, Nishi Ku, Fukuoka 8190395, Japan
[2] Kyushu Univ, Next Generat Fuel Cell Res Ctr NEXT FC, Nishi Ku, Fukuoka 8190395, Japan
[3] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Nishi Ku, Fukuoka 8190395, Japan
[4] Kyushu Univ, Internat Res Ctr Hydrogen Energy, Nishi Ku, Fukuoka 8190395, Japan
关键词
OXYGEN REDUCTION REACTION; NANOPLATELETS; NANOCATALYSTS; GRAPHITE;
D O I
10.1149/2.0231409jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Gram-scale synthesis of defective graphene foam from low-cost precursors is reported as a catalyst support material for platinum in fuel cell cathodes. The material was produced by combustion of sodium ethoxide, followed by washing and heat-treatment in various gases. The BET surface area is higher than 1500 m(2)/g. The defects in the material result in excellent distribution of platinum nanoparticles on the surface. The electrochemical performance is compared with platinum-decorated carbon black and commercially obtainable graphene using cyclic voltammetry, linear sweep voltammetry, and membrane electrode assemblies. Pt-decorated graphene foam has larger electrochemical surface area (101 m(2)/g) and higher mass activity (176 A/g(Pt)). However, durability and fuel cell power density still require improvements. This graphene foam is a potentially useful catalyst support, especially for use in polymer electrolyte membrane fuel cells. (C) The Author(s) 2014. Published by ECS. All rights reserved.
引用
收藏
页码:F838 / F844
页数:7
相关论文
共 26 条
[1]  
[Anonymous], MEAS LATT PAR CRYST
[2]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[3]   Thermal stability studies of CVD-grown graphene nanoribbons: Defect annealing and loop formation [J].
Campos-Delgado, J. ;
Kim, Y. A. ;
Hayashi, T. ;
Morelos-Gomez, A. ;
Hofmann, M. ;
Muramatsu, H. ;
Endo, M. ;
Terrones, H. ;
Shull, R. D. ;
Dresselhaus, M. S. ;
Terrones, M. .
CHEMICAL PHYSICS LETTERS, 2009, 469 (1-3) :177-182
[4]  
Choucair M, 2009, NAT NANOTECHNOL, V4, P30, DOI [10.1038/nnano.2008.365, 10.1038/NNANO.2008.365]
[5]   Toward N-Doped Graphene via Solvothermal Synthesis [J].
Deng, Dehui ;
Pan, Xiulian ;
Yu, Liang ;
Cui, Yi ;
Jiang, Yeping ;
Qi, Jing ;
Li, Wei-Xue ;
Fu, Qiang ;
Ma, Xucun ;
Xue, Qikun ;
Sun, Gongquan ;
Bao, Xinhe .
CHEMISTRY OF MATERIALS, 2011, 23 (05) :1188-1193
[6]   Probing mechanical properties of graphene with Raman spectroscopy [J].
Ferralis, Nicola .
JOURNAL OF MATERIALS SCIENCE, 2010, 45 (19) :5135-5149
[7]  
Fuel Cell Commercialization Conference of Japan (FCCJ), PROP DEV TARG RES DE
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   Improving platinum catalyst binding energy to graphene through nitrogen doping [J].
Groves, M. N. ;
Chan, A. S. W. ;
Malardier-Jugroot, C. ;
Jugroot, M. .
CHEMICAL PHYSICS LETTERS, 2009, 481 (4-6) :214-219
[10]   Graphene/carbon nanospheres sandwich supported PEM fuel cell metal nanocatalysts with remarkably high activity and stability [J].
He, Daping ;
Cheng, Kun ;
Peng, Tao ;
Mu, Shichun .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (06) :2126-2132