Prediction of PM10 and SO2 exceedances to control air pollution in the Bay of Algeciras, Spain

被引:31
|
作者
Munoz, E. [1 ]
Martin, M. L. [1 ]
Turias, I. J. [1 ]
Jimenez-Come, M. J. [1 ]
Trujillo, F. J. [1 ]
机构
[1] Univ Cadiz, Polytech Sch Engn Algeciras, Intelligent Modelling Syst Res Grp, Cadiz 11202, Spain
关键词
Support vector machine; Artificial neural network; Pollution episode; Daily PM10 concentration; Daily SO2 concentration; NEURAL-NETWORKS; DAILY MORTALITY; QUALITY; MODELS; ASSOCIATION; REGRESSION; HEALTH; CO;
D O I
10.1007/s00477-013-0827-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, the authors apply different classification techniques in order to provide 24 h advance forecasts of the daily peaks of SO2 and PM10 concentrations in the Bay of Algeciras. K-nearest-neighbours, multilayer neural network with backpropagation and support vector machines (SVMs) are the classification methods used. The aim of this research is to obtain a suitable prediction model that would enable us to predict the peaks of pollutant concentrations in critical meteorological situations caused by the widespread existing industry and population in the area. A resampling strategy with twofold crossvalidation has been applied, using different quality indexes to evaluate the performance of the prediction models. SVM models achieved better true positive rate and accuracy (ACC) quality indexes. Results of ACC index value of 0.795 for PM10 and 0.755 for SO2 showed the ability of the model to predict peaks and non-peaks correctly.
引用
收藏
页码:1409 / 1420
页数:12
相关论文
共 50 条
  • [21] Deliberating Performance Targets: Follow-on workshop discussing PM10, NO2, CO, and SO2 air sensor targets
    Duvall, R. M.
    Hagler, G. S. W.
    Clements, A. L.
    Benedict, K.
    Barkjohn, K.
    Kilaru, V
    Hanley, T.
    Watkins, N.
    Kaufman, A.
    Kamal, A.
    Reece, S.
    Fransioli, P.
    Gerboles, M.
    Gillerman, G.
    Habre, R.
    Hannigan, M.
    Ning, Z.
    Papapostolou, V
    Pope, R.
    Quintana, P. J. E.
    Snyder, J. Lam
    ATMOSPHERIC ENVIRONMENT, 2021, 246
  • [22] Spatiotemporal Characteristics of Air Pollutants (PM10, PM2.5, SO2, NO2, O3, and CO) in the Inland Basin City of Chengdu, Southwest China
    Xiao, Kuang
    Wang, Yuku
    Wu, Guang
    Fu, Bin
    Zhu, Yuanyuan
    ATMOSPHERE, 2018, 9 (02):
  • [23] Prediction of air pollution and analysis of its effects on the pollution dispersion of PM10 in Egypt using machine learning algorithms
    Hanna, Wael K.
    Elstohy, Rasha
    Radwan, Nouran M.
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2022, 14 (04) : 358 - 371
  • [24] Modeling of PM10 Air Pollution in Urban Environment Using MARS
    Gocheva-Ilieva, Snezhana G.
    Ivanov, Atanas V.
    Voynikova, Desislava S.
    Stoimenova, Maya P.
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2019), 2020, 11958 : 237 - 244
  • [25] Improving Neural Network Prediction Accuracy for PM10 Individual Air Quality Index Pollution Levels
    Feng, Qi
    Wu, Shengjun
    Du, Yun
    Xue, Huaiping
    Xiao, Fei
    Ban, Xuan
    Li, Xiaodong
    ENVIRONMENTAL ENGINEERING SCIENCE, 2013, 30 (12) : 725 - 732
  • [26] Assessing the human development aspects of CO, PM2.5, PM10, NOX, and SO2 in the United States
    Alola, Andrew Adewale
    Udemba, Edmund Ntom
    Iwuagwu, Chikaodinaka
    Abdallah, Ibrahim
    HELIYON, 2023, 9 (07)
  • [28] Universal system for forecasting changes in PM10 and PM2.5 particulate matter air pollution concentration
    Lasiewicz, Marek
    Bogusz, Malgorzata
    Kosla, Magdalena
    INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2015, 56 (1-4) : 94 - 108
  • [29] New indices for wet scavenging of air pollutants (O3, CO, NO2, SO2, and PM10) by summertime rain
    Yoo, Jung-Moon
    Lee, Yu-Ri
    Kim, Dongchul
    Jeong, Myeong-Jae
    Stockwell, William R.
    Kundu, Praun K.
    Oh, Soo-Min
    Shin, Dong-Bin
    Lee, Suk-Jo
    ATMOSPHERIC ENVIRONMENT, 2014, 82 : 226 - 237
  • [30] Effect of air pollutants particulate matter (PM2.5, PM10), sulfur dioxide (SO2) and ozone (O3) on cognitive health
    Meo, Sultan Ayoub
    Shaikh, Narmeen
    Alotaibi, Metib
    AlWabel, Abdullah Abdulziz
    Alqumaidi, Hamid
    SCIENTIFIC REPORTS, 2024, 14 (01):