Prediction of PM10 and SO2 exceedances to control air pollution in the Bay of Algeciras, Spain

被引:31
|
作者
Munoz, E. [1 ]
Martin, M. L. [1 ]
Turias, I. J. [1 ]
Jimenez-Come, M. J. [1 ]
Trujillo, F. J. [1 ]
机构
[1] Univ Cadiz, Polytech Sch Engn Algeciras, Intelligent Modelling Syst Res Grp, Cadiz 11202, Spain
关键词
Support vector machine; Artificial neural network; Pollution episode; Daily PM10 concentration; Daily SO2 concentration; NEURAL-NETWORKS; DAILY MORTALITY; QUALITY; MODELS; ASSOCIATION; REGRESSION; HEALTH; CO;
D O I
10.1007/s00477-013-0827-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, the authors apply different classification techniques in order to provide 24 h advance forecasts of the daily peaks of SO2 and PM10 concentrations in the Bay of Algeciras. K-nearest-neighbours, multilayer neural network with backpropagation and support vector machines (SVMs) are the classification methods used. The aim of this research is to obtain a suitable prediction model that would enable us to predict the peaks of pollutant concentrations in critical meteorological situations caused by the widespread existing industry and population in the area. A resampling strategy with twofold crossvalidation has been applied, using different quality indexes to evaluate the performance of the prediction models. SVM models achieved better true positive rate and accuracy (ACC) quality indexes. Results of ACC index value of 0.795 for PM10 and 0.755 for SO2 showed the ability of the model to predict peaks and non-peaks correctly.
引用
收藏
页码:1409 / 1420
页数:12
相关论文
共 50 条
  • [1] Prediction of PM10 and SO2 exceedances to control air pollution in the Bay of Algeciras, Spain
    E. Muñoz
    M. L. Martín
    I. J. Turias
    M. J. Jimenez-Come
    F. J. Trujillo
    Stochastic Environmental Research and Risk Assessment, 2014, 28 : 1409 - 1420
  • [2] Evaluation of Air Pollution by NO2, SO2, PM10 in Bucharest
    Rusanescu, Carmen Otilia
    Jinescu, Cosmin
    Rusanescu, Marin
    Begea, Mihaela
    Ghermec, Olimpia
    REVISTA DE CHIMIE, 2018, 69 (01): : 105 - 111
  • [3] Air pollution relevance analysis in the bay of Algeciras (Spain)
    Rodriguez-Garcia, M., I
    Gonzalez-Enrique, J.
    Moscoso-Lopez, J. A.
    Ruiz-Aguilar, J. J.
    Turias, I. J.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2023, 20 (07) : 7925 - 7938
  • [4] THE ROLE OF CLIMATE FACTORS ON AIR POLLUTANTS (PM10 AND SO2)
    Zateroglu, Mine Tulin
    FRESENIUS ENVIRONMENTAL BULLETIN, 2021, 30 (11): : 12029 - 12036
  • [5] A novel hybrid forecasting model for PM10 and SO2 daily concentrations
    Wang, Ping
    Liu, Yong
    Qin, Zuodong
    Zhang, Guisheng
    SCIENCE OF THE TOTAL ENVIRONMENT, 2015, 505 : 1202 - 1212
  • [6] SPATIAL EVALUATION OF NO2, SO2, PM10 AND BTEX CONCENTRATIONS IN URBAN AMBIENT AIR
    Paliulis, Dainius
    Baltrenas, Pranas
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2019, 18 (03): : 555 - 562
  • [7] Predicting PM2.5, PM10, SO2, NO2, NO and CO Air Pollutant Values with Linear Regression in R Language
    Kazi, Zoltan
    Filip, Snezana
    Kazi, Ljubica
    APPLIED SCIENCES-BASEL, 2023, 13 (06):
  • [8] Metropolitan air pollution abatement and industrial growth: Global urban panel analysis of PM10, PM2.5, NO2 and SO2
    Leffel, Benjamin
    Tavasoli, Nikki
    Liddle, Brantley
    Henderson, Kent
    Kiernan, Sabrina
    ENVIRONMENTAL SOCIOLOGY, 2022, 8 (01): : 94 - 107
  • [9] Intelligent forecaster of concentrations (PM2.5, PM10, NO2, CO, O3, SO2) caused air pollution (IFCsAP)
    Al-Janabi, Samaher
    Alkaim, Ayad
    Al-Janabi, Ehab
    Aljeboree, Aseel
    Mustafa, M.
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (21) : 14199 - 14229
  • [10] Intelligent forecaster of concentrations (PM2.5, PM10, NO2, CO, O3, SO2) caused air pollution (IFCsAP)
    Samaher Al-Janabi
    Ayad Alkaim
    Ehab Al-Janabi
    Aseel Aljeboree
    M. Mustafa
    Neural Computing and Applications, 2021, 33 : 14199 - 14229