Sacrificial-layer atomic layer deposition for fabrication of non-close-packed inverse-opal photonic crystals

被引:57
作者
Graugnard, Elton [1 ]
King, Jeffrey S. [1 ]
Gaillot, Davy P. [1 ]
Summers, Christopher J. [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
关键词
D O I
10.1002/adfm.200500841
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A method is presented for predicting and precisely controlling the structure of photonic crystals fabricated using sacrificial-layer atomic layer deposition. This technique provides a reliable method for fabrication of high-quality non-close-packed inverse shell opals with large static tunability and precise structural control. By using a sacrificial layer during opal infiltration, the inverse-opal pore size can be increased with sub-nanometer resolution and without distorting the lattice to allow for a high degree of dielectric backfilling and increased optical tunability. For a 10% sacrificial layer, static tunability of 80% is predicted for the inverse opal. To illustrate this technique, SiO2 opal templates were infiltrated using atomic layer deposition of ZnS, Al2O3, and TiO2. Experimentally, a static tunability of over 600 nm, or 58%, was achieved and is well described by both a geometrical model and a numerical simulation algorithm. When extended to materials of higher refractive index, this method will alow the facile fabrication of 3D photonic crystals with optimized photonic bandgaps.
引用
收藏
页码:1187 / 1196
页数:10
相关论文
共 30 条
[1]   Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres [J].
Blanco, A ;
Chomski, E ;
Grabtchak, S ;
Ibisate, M ;
John, S ;
Leonard, SW ;
Lopez, C ;
Meseguer, F ;
Miguez, H ;
Mondia, JP ;
Ozin, GA ;
Toader, O ;
van Driel, HM .
NATURE, 2000, 405 (6785) :437-440
[2]   Photonic band gap formation in certain self-organizing systems [J].
Busch, K ;
John, S .
PHYSICAL REVIEW E, 1998, 58 (03) :3896-3908
[3]   Photonic bandgap optimization in inverted fcc photonic crystals [J].
Doosje, M ;
Hoenders, BJ ;
Knoester, J .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2000, 17 (04) :600-606
[4]   Non-close-packed artificial opals [J].
Fenollosa, R ;
Meseguer, F .
ADVANCED MATERIALS, 2003, 15 (15) :1282-+
[5]   Photonic band engineering in opals by growth of Si/Ge multilayer shells [J].
García-Santamaría, F ;
Ibisate, M ;
Rodríguez, I ;
Meseguer, F ;
López, C .
ADVANCED MATERIALS, 2003, 15 (10) :788-+
[6]   Low-temperature Al2O3 atomic layer deposition [J].
Groner, MD ;
Fabreguette, FH ;
Elam, JW ;
George, SM .
CHEMISTRY OF MATERIALS, 2004, 16 (04) :639-645
[8]   High-energy photonic bandgap in Sb2S3 inverse opals by sulfidation processing [J].
Juárez, BH ;
Ibisate, M ;
Palacios, JM ;
López, C .
ADVANCED MATERIALS, 2003, 15 (04) :319-323
[9]   Conformally back-filled, non-close-packed inverse-opal photonic crystals [J].
King, JS ;
Gaillot, DP ;
Graugnard, E ;
Surnmers, CJ .
ADVANCED MATERIALS, 2006, 18 (08) :1063-+
[10]   TiO2 inverse opals fabricated using low-temperature atomic layer deposition [J].
King, JS ;
Graugnard, E ;
Summers, CJ .
ADVANCED MATERIALS, 2005, 17 (08) :1010-+