MoTe2 on metal-organic framework derived MoO2/N-doped carbon rods for enhanced sodium-ion storage properties

被引:15
|
作者
Zhang, Yi-Jie [1 ]
Gao, Yi-Jun [1 ]
Wang, Xiaoge [2 ]
Ye, Qin [1 ]
Zhang, Ya [1 ]
Wu, Yu [1 ]
Chen, Shu-Han [1 ]
Ruan, Bo [1 ]
Shi, Dean [1 ]
Jiang, Tao [1 ]
Tsai, Fang-Chang [1 ,3 ]
Ma, Ning [1 ]
机构
[1] Hubei Univ, Hubei Collaborat Innovat Ctr Adv Organ Chem Mat, Sch Mat Sci & Engn, Hubei Key Lab Polymer Mat,Minist Educ,Key Lab Gre, Wuhan 430062, Peoples R China
[2] Peking Univ, Coll Chem & Mol Engn, Dept Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China
[3] Huanggang Normal Univ, Hubei Collaborat Innovat Ctr Characterist Resourc, Hubei Key Lab Econ Forest Germplasm Improvement &, Huanggang 438000, Peoples R China
关键词
Molybdenum telluride; N-doped carbon rods; Metal-organic framework; Sodium-ion batteries; Transition metal dichalcogenides; PERFORMANCE ANODE MATERIAL; ULTRATHIN MOS2 NANOSHEETS; LITHIUM-ION; AIR BATTERIES; NANOPARTICLES; GRAPHENE; COMPOSITES; NANOROD; HYBRID;
D O I
10.1016/j.energy.2021.123043
中图分类号
O414.1 [热力学];
学科分类号
摘要
Sodium-ion batteries (SIBs) are highly potential for next-generation electrochemical energy storage because of their abundant resources and low prices. Transition metal dichalcogenides (TMDCs) have an excellent capacity, high electrical conductivity, and diverse structures. However, its volume expansion and tendency to restack during charge/discharge cycles lead to inferior electrochemical properties, limiting its development in the battery field. Herein, we synthesized MoO2/NC rods covered with MoTe2 nanosheets on the surface (MoTe2@MoO2/NC) by a high-temperature solid-phase synthesis method based on Mo-MOF a sacrificial template for sodium-ion batteries. The MoO2 core enhances the electron transfer efficiency as a conductive backbone and prevents the volume expansion of MoTe2 nanosheets. Meanwhile, the MoTe2 nanosheets are tightly wrapped around the MoO2 core, significantly reducing the ion diffusion path. Furthermore, the C and N doped substrates with conductivity ensure the integrity of the structure and enhance the conductivity of the electrodes. Benefiting from these advantages, MoTe2@MoO2/NC delivered a high electrochemical performance with high capacity (similar to 463.9 mAh g(-1)), superior fast-charge discharge ability (similar to 294.7, and 258.3 mAh g(-1) at 5, and 10 A g(-1), respectively). Even at a high current density of 1 A g(-1), the specific capacity was maintained at about 328.3 mAh g(-1) after 100 cycles. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Highly uniform nitrogen-doped carbon decorated MoO2 nanopopcorns as anode for high-performance lithium/sodium-ion storage
    Zhang, Peilin
    Guo, Shouzhi
    Liu, Jinzhe
    Zhou, Chencheng
    Li, Shuo
    Yang, Yun
    Wu, Jing
    Yu, Di
    Chen, Luyang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 563 : 318 - 327
  • [22] Interface Optimization of Cu2S Nanoparticles by Loading N-Doped Carbon for Efficient Sodium-Ion Storage
    Wang, Jinhui
    Chen, Xue
    Wang, Yang
    Tian, Guiying
    Zhao, Zijian
    Alvarez, Jose Ignacio
    SUSTAINABILITY, 2023, 15 (24)
  • [23] Metal-organic frameworks derived hollow NiS2 spheres encased in graphene layers for enhanced sodium-ion storage
    Bi, Ran
    Zeng, Cheng
    Huang, Huawen
    Wang, Xinping
    Zhang, Lei
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (29) : 14077 - 14082
  • [24] Metal-organic frameworks engaged formation of FeSe2/N-doped carbon as anode enables high-performance sodium-ion batteries
    Jiang, Jiangmin
    Jiang, Ye
    Chen, Ziyu
    Tang, Cai
    Cheng, Yaxin
    Zhuang, Quanchao
    Ju, Zhicheng
    MATERIALS LETTERS, 2023, 352
  • [25] Metal-Organic Framework-derived synthesis of MoO2-Cu@NC nanocomposites for enhanced lithium storage properties
    Liu, Zhenghao
    Yao, Mengzhi
    Wang, Yourong
    Liang, Youcai
    Li, Yuhan
    Cheng, Siqing
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (05): : 4242 - 4251
  • [26] Metal-organic-framework-derived cubic Co2P@NC for fast sodium-ion storage
    Zhao, Qichao
    Ge, Yu
    Wang, Xianfen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 947
  • [27] Rich oxygen vacancies promotes MoO2/N-doped carbon nanoribbons for high-performance sodium/potassium-ion batteries
    Du, Yanan
    Huang, Zhiqiang
    Yu, Maoxin
    Wu, Zhilong
    Huang, Xiaohui
    Ying, Shaoming
    Yang, Haotian
    Lin, Zhiya
    JOURNAL OF ELECTROCERAMICS, 2025,
  • [28] Zn2+ doped TiO2/C with enhanced sodium-ion storage properties
    Li, Yong-Ni
    Su, Jing
    Lv, Xiao-Yan
    Long, Yun-Fei
    Yu, Hang
    Huang, Rong-Rong
    Xie, Yong-Chun
    Wen, Yan-Xuan
    CERAMICS INTERNATIONAL, 2017, 43 (13) : 10326 - 10332
  • [29] Metal-Organic Framework-Derived NiSe Embedded into a Porous Multi-Heteroatom Self-Doped Carbon Matrix as a Promising Anode for Sodium-Ion Battery
    Shi, Xiaoyan
    Fang, Lujun
    Peng, Handong
    Deng, Xizhan
    Sun, Zhipeng
    NANOMATERIALS, 2022, 12 (19)
  • [30] Metal-organic framework-derived Ni2P/nitrogen-doped carbon porous spheres for enhanced lithium storage
    Tao, Shi
    Cui, Peixin
    Cong, Shan
    Chen, Shuangming
    Wu, Dajun
    Qian, Bin
    Song, Li
    Marcelli, Augusto
    SCIENCE CHINA-MATERIALS, 2020, 63 (09) : 1672 - 1682