On Stable Solutions to Weighted Quasilinear Problems of Gelfand Type

被引:8
作者
Phuong Le [1 ,2 ]
Le, Diem Hang T. [3 ]
Le, Kim Anh T. [3 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Banking Univ Ho Chi Minh City, Dept Math Econ, Ho Chi Minh City, Vietnam
关键词
Quasilinear problems; stable solutions; Liouville theorems; Gelfand nonlinearity; NONLINEAR ELLIPTIC-EQUATIONS; P-LAPLACE EQUATION; R-N; LIOUVILLE THEOREMS; CLASSIFICATION;
D O I
10.1007/s00009-018-1143-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p >= 2 and w, f is an element of L-loc(1)(R-N ) be nonnegative functions such that w(x) <= C-l vertical bar x vertical bar(a); and f (x) >= C-2 vertical bar x vertical bar(b) for large vertical bar x vertical bar. We prove the Liouville type theorem for stable W-loc(1,p) solutions of weighted quasilinear problem -div(w(x)vertical bar del(u)vertical bar(P-2) del u) = f (x)e(u) in R-N . The result holds true for N < (p - a) (p + 3) + 4b /p - 1 and is sharp in the case that w and f are Hardy-Henon potentials. We also prove the full classification of solutions which are stable outside a compact set to Gelfand equation -Delta N-u = e(u )in R-N .
引用
收藏
页数:12
相关论文
共 21 条
  • [1] Regularity of radial minimizers of reaction equations involving the p-Laplacian
    Cabre, Xavier
    Capella, Antonio
    Sanchon, Manel
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (04) : 475 - 494
  • [2] LOW DIMENSIONAL INSTABILITY FOR SEMILINEAR AND QUASILINEAR PROBLEMS IN RN
    Castorina, Daniele
    Esposito, Pierpaolo
    Sciunzi, Berardino
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (06) : 1779 - 1793
  • [3] Catrina F, 2001, COMMUN PUR APPL MATH, V54, P229, DOI 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO
  • [4] 2-I
  • [5] Liouville type theorems for stable solutions of p-Laplace equation in RN
    Chen, Caisheng
    Song, Hongxue
    Yang, Hongwei
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 160 : 44 - 52
  • [6] ON STABLE ENTIRE SOLUTIONS OF SEMI-LINEAR ELLIPTIC EQUATIONS WITH WEIGHTS
    Cowan, Craig
    Fazly, Mostafa
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (06) : 2003 - 2012
  • [7] Liouville results for m-Laplace equations of Lane-Emden-Fowler type
    Damascelli, Lucio
    Farina, Alberto
    Sciunzi, Berardino
    Valdinoci, Enrico
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (04): : 1099 - 1119
  • [8] Stable solutions of -Δu=f(u) in RN
    Dupaigne, L.
    Farina, A.
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (04) : 855 - 882
  • [9] Dupaigne L., 2011, MONOGRAPHS SURVEYS P, V143
  • [10] A classification result for the quasi-linear Liouville equation
    Esposito, Pierpaolo
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (03): : 781 - 801