Two-pore potassium channels in the cardiovascular system

被引:90
作者
Gurney, Alison [1 ]
Manoury, Boris [1 ]
机构
[1] Univ Manchester, Fac Life Sci, Manchester M13 9NT, Lancs, England
来源
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS | 2009年 / 38卷 / 03期
基金
英国生物技术与生命科学研究理事会;
关键词
Two pore channel; TREK-1; TASK-1; Cardiovascular; Heart; Artery; SMOOTH-MUSCLE-CELLS; HYPOXIC PULMONARY VASOCONSTRICTION; BACKGROUND K+ CHANNEL; CEREBELLAR GRANULE NEURONS; POLYUNSATURATED FATTY-ACIDS; ARACHIDONIC-ACID; DELAYED-RECTIFIER; FUNCTIONAL EXPRESSION; ARTERIAL-HYPERTENSION; VENTRICULAR MYOCYTES;
D O I
10.1007/s00249-008-0326-8
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Two-pore domain (K-2P) channels emerged about a decade ago and since then have been an expanding area of interest. This is because their biophysical and pharmacological properties make them good candidates to support background potassium currents and membrane potential in many cell types. There is clear evidence for TREK-1 and TASK-1 in the heart and these channels are likely to regulate cardiac action potential duration through their regulation by stretch, polyunsaturated fatty acids, pH, and neurotransmitters. TREK-1 may also have a critical role in mediating the vasodilator response of resistance arteries to polyunsaturated fatty acids, thus contributing to their protective effect on the cardiovascular system. TASK-1, on the other hand, is a strong candidate for a role in hypoxic vasoconstriction of pulmonary arteries. Many other members of the K-2P channel family have been identified in the cardiovascular system, although their functional roles are still to be demonstrated. This review provides an up to date summary of what is known about the involvement of members of the K-2P channel family in cells of the heart and arterial circulation. Our knowledge of their roles will improve with the rapidly increasing interest in them and as new selective pharmacological tools emerge. As their physiological roles emerge, the K-2P family of potassium channels may offer promising therapeutic solutions to target cardiovascular diseases.
引用
收藏
页码:305 / 318
页数:14
相关论文
共 129 条
[1]   Simultaneous activation of p38 MAPK and p42/44 MAPK by ATP stimulates the K+ current ITREK in cardiomyocytes [J].
Aimond, F ;
Rauzier, JM ;
Bony, C ;
Vassort, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (50) :39110-39116
[2]   Modifying the subunit composition of TASK channels alters the modulation of a leak conductance in cerebellar granule neurons [J].
Aller, MI ;
Veale, EL ;
Linden, AM ;
Sandu, C ;
Schwaninger, M ;
Evans, LJ ;
Korpi, ER ;
Mathie, A ;
Wisden, W ;
Brickley, SG .
JOURNAL OF NEUROSCIENCE, 2005, 25 (49) :11455-11467
[3]   Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction -: Ionic diversity in smooth muscle cells [J].
Archer, SL ;
Wu, XC ;
Thébaud, B ;
Nsair, A ;
Bonnet, S ;
Tyrrell, B ;
McMurtry, MS ;
Hashimoto, K ;
Harry, G ;
Michelakis, ED .
CIRCULATION RESEARCH, 2004, 95 (03) :308-318
[4]   Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BKCa channels [J].
Archer, SL ;
Gragasin, FS ;
Wu, XC ;
Wang, SH ;
McMurtry, S ;
Kim, DH ;
Platonov, M ;
Koshal, A ;
Hashimoto, K ;
Campbell, WB ;
Falck, JR ;
Michelakis, ED .
CIRCULATION, 2003, 107 (05) :769-776
[5]   Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5 [J].
Archer, SL ;
London, B ;
Hampl, V ;
Wu, XC ;
Nsair, A ;
Puttagunta, L ;
Hashimoto, K ;
Waite, RE ;
Michelakis, ED .
FASEB JOURNAL, 2001, 15 (08) :1801-+
[6]   BACKGROUND POTASSIUM CURRENT ACTIVE DURING THE PLATEAU OF THE ACTION-POTENTIAL IN GUINEA-PIG VENTRICULAR MYOCYTES [J].
BACKX, PH ;
MARBAN, E .
CIRCULATION RESEARCH, 1993, 72 (04) :890-900
[7]   Block of the background K+ channel TASK-1 contributes to arrhythmogenic effects of platelet-activating factor [J].
Barbuti, A ;
Ishii, S ;
Shimizu, T ;
Robinson, RB ;
Feinmark, SJ .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2002, 282 (06) :H2024-H2030
[8]   Motoneurons express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits [J].
Berg, AP ;
Talley, EM ;
Manger, JP ;
Bayliss, DA .
JOURNAL OF NEUROSCIENCE, 2004, 24 (30) :6693-6702
[9]  
Bhattacharjee A, 2003, J NEUROSCI, V23, P11681
[10]   Polyunsaturated fatty acids are cerebral vasodilators via the TREK-1 potassium channel [J].
Blondeau, Nicolas ;
Petrault, Olivier ;
Manta, Stella ;
Giordanengo, Valerie ;
Gounon, Pierre ;
Bordet, Regis ;
Lazdunski, Michel ;
Heurteaux, Catherine .
CIRCULATION RESEARCH, 2007, 101 (02) :176-184